Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Erwin-Schrodinger-Str. 44, Kaiserslautern 67663, Germany.
School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749, South Korea.
J Chem Phys. 2018 Jan 21;148(3):034703. doi: 10.1063/1.5004545.
We justify and discuss the physical origins for the assumption of temperature continuity at crystal/melt interfaces by performing atomistic simulations. We additionally answer why the crystal/melt interfaces differ from the typical solid/liquid interfaces, which usually exhibit dissimilarities and a resulting temperature drop. We present results for pure silver modeled using the embedded-atom method and Lennard-Jones potential function and contrast the results with each other. We find that the temperature continuity at an interface between a crystal and its melt originates from the perfect vibrational coupling, which is caused by the interfacial structural diffusivity. This study provides fundamental insights into the heat transfer for cases of extremely large heat flux and thermal gradients occurring during rapid melting and solidification. The findings additionally determine the role of rough surfaces in manipulating the thermal conductance in nanodevices.
我们通过进行原子模拟,为晶体/熔体界面处温度连续性的假设提供了物理依据并对其进行了讨论。此外,我们还回答了为什么晶体/熔体界面不同于典型的固/液界面,后者通常表现出不连续性并导致温度下降。我们使用嵌入原子法和 Lennard-Jones 位能函数对纯银进行了建模,并对结果进行了对比。我们发现,晶体与其熔体之间界面处的温度连续性源于完美的振动耦合,这是由界面结构扩散率引起的。这项研究为在快速熔化和凝固过程中出现的极高热通量和热梯度情况下的传热提供了基本的见解。这些发现还确定了粗糙表面在控制纳米器件热导中的作用。