Suppr超能文献

基于符号转移熵的中风患者脑电图-肌电图耦合分析

Electroencephalogram-Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy.

作者信息

Gao Yunyuan, Ren Leilei, Li Rihui, Zhang Yingchun

机构信息

College of Automation, Intelligent Control & Robotics Institute, Hangzhou Dianzi University, Hangzhou, China.

Department of Biomedical Engineering, University of Houston, Houston, TX, United States.

出版信息

Front Neurol. 2018 Jan 4;8:716. doi: 10.3389/fneur.2017.00716. eCollection 2017.

Abstract

The coupling strength between electroencephalogram (EEG) and electromyography (EMG) signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients ( = 5) and healthy volunteers ( = 7) were recruited and participated in various tasks (left and right hand gripping, elbow bending). The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG-EMG coupling strength was observed in the beta frequency band (15-35 Hz) during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles.

摘要

运动控制过程中脑电图(EEG)与肌电图(EMG)信号之间的耦合强度反映了大脑运动皮层与肌肉之间的相互作用。因此,神经肌肉耦合特征对于评估运动功能具有指导意义。在本研究中,为克服传统时间序列符号化方法中信号特征丢失的局限性,提出了一种可变尺度符号传递熵(VS-STE)分析方法用于皮质肌肉耦合评估。招募了中风后患者(n = 5)和健康志愿者(n = 7),并让他们参与各种任务(左手和右手抓握、肘部弯曲)。所提出的VS-STE用于评估在时域和频域中从运动皮层测量的EEG信号与从上肢测量的EMG信号之间的皮质肌肉耦合强度。结果显示,与健康对照组相比,中风后患者双向(EEG到EMG和EMG到EEG)VS-STE的强度更大。此外,在上肢运动期间,在β频段(15 - 35Hz)观察到最强的EEG - EMG耦合强度。患者患侧EMG到EEG的预定义耦合强度大于EEG到EMG的耦合强度。总之,结果表明皮质肌肉耦合是双向的,并且所提出的VS-STE可用于定量表征初级运动皮层与肌肉之间的非线性同步特征和信息相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f90/5758532/8ffd7e262345/fneur-08-00716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验