Suppr超能文献

利用一个21年的数据集评估三条农业溪流中年度氮、磷和悬浮泥沙负荷估计值的不确定性。

Assessing uncertainty in annual nitrogen, phosphorus, and suspended sediment load estimates in three agricultural streams using a 21-year dataset.

作者信息

Kelly Patrick T, Vanni Michael J, Renwick William H

机构信息

Department of Biology, Miami University, Oxford, OH, 45056, USA.

Department of Geography, Miami University, Oxford, OH, 45056, USA.

出版信息

Environ Monit Assess. 2018 Jan 22;190(2):91. doi: 10.1007/s10661-018-6470-4.

Abstract

Accurate estimation of constituent loads is important for studies of ecosystem mass balance or total maximum daily loads. In response, there has been an effort to develop methods to increase both accuracy and precision of constituent load estimates. The relationship between constituent concentration and stream discharge is often complicated, potentially leading to high uncertainty in load estimates for certain constituents, especially at longer-term (annual) scales. We used the loadflex R package to compare uncertainty in annual load estimates from concentration vs. discharge relationships in constituents of interest in agricultural systems, including ammonium as nitrogen (NH-N), nitrate as nitrogen (NO-N), soluble reactive phosphorus (SRP), and suspended sediments (SS). We predicted that uncertainty would be greatest in NO-N and SS due to complex relationships between constituent concentration and discharge. We also predicted lower uncertainty with a composite method compared to regression or interpolation methods. Contrary to predictions, we observed the lowest uncertainty in annual NO-N load estimates (relative error 1.5-23%); however, uncertainty was greatest in SS load estimates, consistent with predictions (relative error 19-96%). For all constituents, we also generally observed reductions in uncertainty by up to 34% using the composite method compared to regression and interpolation approaches, as predicted. These results highlight differences in uncertainty among different constituents and will aid in model selection for future studies requiring accurate and precise estimates of constituent load.

摘要

准确估算成分负荷对于生态系统质量平衡或每日最大总负荷的研究至关重要。为此,人们一直在努力开发提高成分负荷估算准确性和精度的方法。成分浓度与河流流量之间的关系通常很复杂,这可能导致某些成分的负荷估算存在很大不确定性,尤其是在长期(年度)尺度上。我们使用了loadflex R包来比较农业系统中感兴趣成分(包括铵态氮(NH-N)、硝态氮(NO-N)、可溶性活性磷(SRP)和悬浮沉积物(SS))的浓度与流量关系的年度负荷估算中的不确定性。我们预测,由于成分浓度与流量之间的复杂关系,NO-N和SS的不确定性将最大。我们还预测,与回归或插值方法相比,复合方法的不确定性更低。与预测相反,我们观察到年度NO-N负荷估算的不确定性最低(相对误差为1.5%-23%);然而,SS负荷估算的不确定性最大,与预测一致(相对误差为19%-96%)。对于所有成分,与回归和插值方法相比,我们通常还观察到使用复合方法时不确定性降低了34%,正如预测的那样。这些结果突出了不同成分之间不确定性的差异,并将有助于为未来需要准确和精确估算成分负荷的研究选择模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验