1 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.
2 Research Division, Joslin Diabetes Center , Boston, Massachusetts.
Diabetes Technol Ther. 2018 Feb;20(2):127-139. doi: 10.1089/dia.2017.0298.
Postbariatric hypoglycemia (PBH) is a complication of bariatric surgery with limited therapeutic options. We developed an event-based system to predict and detect hypoglycemia based on continuous glucose monitor (CGM) data and recommend delivery of minidose liquid glucagon.
We performed an iterative development clinical study employing a novel glucagon delivery system: a Dexcom CGM connected to a Windows tablet running a hypoglycemia prediction algorithm and an Omnipod pump filled with an investigational stable liquid glucagon formulation. Meal tolerance testing was performed in seven participants with PBH and history of neuroglycopenia. Glucagon was administered when hypoglycemia was predicted. Primary outcome measures included the safety and feasibility of this system to predict and prevent severe hypoglycemia. Secondary outcomes included hypoglycemia prediction by the prediction algorithm, minimization of time below hypoglycemia threshold using glucagon, and prevention of rebound hyperglycemia.
The hypoglycemia prediction algorithm alerted for impending hypoglycemia in the postmeal state, prompting delivery of glucagon (150 μg). After observations of initial incomplete efficacy to prevent hypoglycemia in the first two participants, system modifications were implemented: addition of PBH-specific detection algorithm, increased glucagon dose (300 μg), and a second glucagon dose if needed. These modifications, together with rescue carbohydrates provided to some participants, contributed to progressive improvements in glucose time above the hypoglycemia threshold (75 mg/dL).
Preliminary results indicate that our event-based automatic monitoring algorithm successfully predicted likely hypoglycemia. Minidose glucagon therapy was well tolerated, without prolonged or severe hypoglycemia, and without rebound hyperglycemia.
减重手术后低血糖(PBH)是一种减重手术的并发症,治疗选择有限。我们开发了一种基于事件的系统,通过连续血糖监测(CGM)数据预测和检测低血糖,并推荐使用迷你剂量液体胰高血糖素。
我们进行了一项迭代开发的临床研究,使用一种新型的胰高血糖素输送系统:一个 Dexcom CGM 与运行低血糖预测算法的 Windows 平板电脑连接,以及一个装满研究用稳定液体胰高血糖素配方的 Omnipod 泵。在七名有 PBH 和神经低血糖病史的参与者中进行了餐耐量测试。当预测到低血糖时,给予胰高血糖素。主要观察指标包括该系统预测和预防严重低血糖的安全性和可行性。次要观察指标包括预测算法对低血糖的预测、使用胰高血糖素将血糖低于阈值的时间最小化以及预防反弹性高血糖。
低血糖预测算法在餐后状态下发出即将发生低血糖的警报,提示输送胰高血糖素(150μg)。在最初的两名参与者中观察到预防低血糖的效果不完全后,对系统进行了修改:增加了 PBH 特异性检测算法、增加了胰高血糖素剂量(300μg)以及如果需要则使用第二剂胰高血糖素。这些修改以及为部分参与者提供的抢救碳水化合物,有助于逐步提高血糖高于低血糖阈值的时间(75mg/dL)。
初步结果表明,我们的基于事件的自动监测算法成功预测了可能的低血糖。迷你剂量胰高血糖素治疗耐受性良好,无延长或严重低血糖,也无反弹性高血糖。