Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
Angew Chem Int Ed Engl. 2018 Mar 1;57(10):2648-2652. doi: 10.1002/anie.201712398. Epub 2018 Feb 2.
A low-temperature ammonia synthesis process is required for on-site synthesis. Barium-doped calcium amide (Ba-Ca(NH ) ) enhances the efficacy of ammonia synthesis mediated by Ru and Co by 2 orders of magnitude more than that of a conventional Ru catalyst at temperatures below 300 °C. Furthermore, the presented catalysts are superior to the wüstite-based Fe catalyst, which is known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru-Ba core-shell structures are self-organized on the Ba-Ca(NH ) support during H pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m g ). These self-organized nanostructures account for the high catalytic performance in low-temperature ammonia synthesis.
需要低温氨合成工艺进行现场合成。钡掺杂的钙氨(Ba-Ca(NH2)2)在 300°C 以下温度下,通过 Ru 和 Co 介导的氨合成的效率比传统 Ru 催化剂增强了 2 个数量级。此外,所提出的催化剂优于基于磁铁矿的 Fe 催化剂,后者是一种在低温和低压下具有高活性的工业催化剂。在 H 预处理过程中,纳米级 Ru-Ba 核壳结构在 Ba-Ca(NH2)2 载体上自组织,并且载体材料同时转化为具有高表面积(>100 m2/g)的介孔结构。这些自组织的纳米结构解释了低温氨合成中的高催化性能。