Suppr超能文献

核壳型 LiNiMnCoO@NaTi(PO) 正极的 NASICON 型表面功能化改性,提高了其高压循环稳定性和锂离子电池倍率性能。

Nasicon-Type Surface Functional Modification in Core-Shell LiNiMnCoO@NaTi(PO) Cathode Enhances Its High-Voltage Cycling Stability and Rate Capacity toward Li-Ion Batteries.

机构信息

School of Material Science and Engineering, University of Jinan , Jinan 250022, P. R. China.

College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5498-5510. doi: 10.1021/acsami.7b15808. Epub 2018 Jan 30.

Abstract

Surface modifications are established well as efficient methodologies to enhance comprehensive Li-storage behaviors of the cathodes and play a significant role in cutting edge innovations toward lithium-ion batteries (LIBs). Herein, we first logically devised a pilot-scale coating strategy to integrate solid-state electrolyte NaTi(PO) (NTP) and layered LiNiMnCoO (NMC) for smart construction of core-shell NMC@NTP cathodes. The Nasicon-type NTP nanoshell with exceptional ion conductivity effectively suppressed gradual encroachment and/or loss of electroactive NMC, guaranteed stable phase interfaces, and meanwhile rendered small sur-/interfacial electron/ion-diffusion resistance. By benefiting from immanently promoting contributions of the nano-NTP coating, the as-fabricated core-shell NMC@NTP architectures were competitively endowed with superior high-voltage cyclic stabilities and rate capacities within larger electrochemical window from 3.0 to 4.6 V when utilized as advanced cathodes for advanced LIBs. More meaningfully, the appealing electrode design concept proposed here will exert significant impact upon further constructing other high-voltage Ni-based cathodes for high-energy/power LIBs.

摘要

表面改性被证实是一种有效的方法,可以提高正极的综合锂存储性能,并在锂离子电池(LIB)的前沿创新中发挥重要作用。在此,我们首次合理设计了一种中试规模的涂层策略,将固态电解质 NaTi(PO)(NTP)和层状 LiNiMnCoO(NMC)集成在一起,用于构建核壳 NMC@NTP 正极的智能结构。具有优异离子电导率的 Na3Zr2Si2PO12 型 NTP 纳米壳有效地抑制了电活性 NMC 的逐渐侵蚀和/或损失,保证了稳定的相界面,同时降低了表面/界面电子/离子扩散阻力。得益于纳米 NTP 涂层的固有促进作用,所制备的核壳 NMC@NTP 结构在 3.0 至 4.6 V 的更大电化学窗口下作为先进 LIBs 的正极材料,表现出优异的高压循环稳定性和倍率性能。更有意义的是,这里提出的有吸引力的电极设计概念将对进一步构建用于高能/大功率 LIBs 的其他高压 Ni 基正极产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验