Suppr超能文献

一种新型的 PNA 诱导的 R 环介导转录抑制模式的体外模型系统。

A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.

机构信息

Department of Biology, Stanford University, Stanford, CA 94305-5020, United States.

Department of Biology, Stanford University, Stanford, CA 94305-5020, United States.

出版信息

Biochim Biophys Acta Gene Regul Mech. 2018 Feb;1861(2):158-166. doi: 10.1016/j.bbagrm.2017.12.008. Epub 2018 Jan 31.

Abstract

The selective inhibition of transcription of a chosen gene by an artificial agent has numerous applications. Usually, these agents are designed to bind a specific nucleotide sequence in the promoter or within the transcribed region of the chosen gene. However, since optimal binding sites might not exist within the gene, it is of interest to explore the possibility of transcription inhibition when the agent is designed to bind at other locations. One of these possibilities arises when an additional transcription initiation site (e.g. secondary promoter) is present upstream from the primary promoter of the target gene. In this case, transcription inhibition might be achieved by inducing the formation of an RNA-DNA hybrid (R-loop) upon transcription from the secondary promoter. The R-loop could extend into the region of the primary promoter, to interfere with promoter recognition by RNA polymerase and thereby inhibit transcription. As a sequence-specific R-loop-inducing agent, a peptide nucleic acid (PNA) could be designed to facilitate R-loop formation by sequestering the non-template DNA strand. To investigate this mode for transcription inhibition, we have employed a model system in which a PNA binding site is localized between the T3 and T7 phage RNA polymerase promoters, which respectively assume the roles of primary and secondary promoters. In accord with our model, we have demonstrated that with PNA-bound DNA substrates, transcription from the T7 promoter reduces transcription from the T3 promoter by 30-fold, while in the absence of PNA binding there is no significant effect of T7 transcription upon T3 transcription.

摘要

人工试剂选择性抑制特定基因的转录具有许多应用。通常,这些试剂被设计用来结合所选基因启动子或转录区的特定核苷酸序列。然而,由于最佳结合位点可能不存在于基因内,因此探索当试剂被设计结合在其他位置时抑制转录的可能性是很有意义的。当目标基因的启动子上游存在额外的转录起始位点(例如二级启动子)时,就会出现这种可能性之一。在这种情况下,通过从二级启动子转录时诱导 RNA-DNA 杂交(R 环)的形成,可能会实现转录抑制。R 环可以延伸到启动子区域,干扰 RNA 聚合酶对启动子的识别,从而抑制转录。作为一种序列特异性的 R 环诱导剂,肽核酸(PNA)可以通过隔离非模板 DNA 链来促进 R 环的形成。为了研究这种转录抑制模式,我们采用了一种模型系统,其中 PNA 结合位点定位于 T3 和 T7 噬菌体 RNA 聚合酶启动子之间,它们分别充当主要和次要启动子的角色。与我们的模型一致,我们已经证明,在用 PNA 结合的 DNA 底物进行转录时,T7 启动子的转录使 T3 启动子的转录减少了 30 倍,而在没有 PNA 结合的情况下,T7 转录对 T3 转录没有显著影响。

相似文献

1
A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.
Biochim Biophys Acta Gene Regul Mech. 2018 Feb;1861(2):158-166. doi: 10.1016/j.bbagrm.2017.12.008. Epub 2018 Jan 31.
6
Extended upstream A-T sequence increases T7 promoter strength.
J Biol Chem. 2005 Dec 9;280(49):40707-13. doi: 10.1074/jbc.M508013200. Epub 2005 Oct 7.
7
Evidence for DNA bending at the T7 RNA polymerase promoter.
J Mol Biol. 2000 Feb 4;295(5):1173-84. doi: 10.1006/jmbi.1999.3418.
8
Unraveling the mysteries of transcription.
Nat Struct Biol. 1999 Jun;6(6):497-9. doi: 10.1038/9260.
9
Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
J Mol Biol. 2011 Nov 11;413(5):1016-27. doi: 10.1016/j.jmb.2011.09.029. Epub 2011 Sep 21.
10
Structure and function in promoter escape by T7 RNA polymerase.
Prog Nucleic Acid Res Mol Biol. 2005;80:323-47. doi: 10.1016/S0079-6603(05)80008-X.

引用本文的文献

1
Gene regulation in : New insights and unanswered questions.
Curr Res Parasitol Vector Borne Dis. 2025 Jun 17;8:100280. doi: 10.1016/j.crpvbd.2025.100280. eCollection 2025.
2
Peptide nucleic acid conjugates and their antimicrobial applications-a mini-review.
Eur Biophys J. 2023 Oct;52(6-7):533-544. doi: 10.1007/s00249-023-01673-w. Epub 2023 Aug 23.
3
Inhibition of Melanosome Transport by Inducing Exon Skipping in Melanophilin.
Biomol Ther (Seoul). 2023 Jul 1;31(4):466-472. doi: 10.4062/biomolther.2022.167. Epub 2023 Mar 27.
4
Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression.
Oncogene. 2021 Feb;40(7):1332-1346. doi: 10.1038/s41388-020-01607-2. Epub 2021 Jan 8.
5
R-loop generation during transcription: Formation, processing and cellular outcomes.
DNA Repair (Amst). 2018 Nov;71:69-81. doi: 10.1016/j.dnarep.2018.08.009. Epub 2018 Aug 25.
6
Locking the nontemplate DNA to control transcription.
Mol Microbiol. 2018 Aug;109(4):445-457. doi: 10.1111/mmi.13983.

本文引用的文献

1
Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
Biotechnol Adv. 2018 Jan-Feb;36(1):295-310. doi: 10.1016/j.biotechadv.2017.11.008. Epub 2017 Nov 29.
2
R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters.
Mol Cell. 2017 Nov 16;68(4):745-757.e5. doi: 10.1016/j.molcel.2017.10.008. Epub 2017 Nov 2.
5
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.
6
Nascent Connections: R-Loops and Chromatin Patterning.
Trends Genet. 2016 Dec;32(12):828-838. doi: 10.1016/j.tig.2016.10.002. Epub 2016 Oct 25.
7
R Loops and Links to Human Disease.
J Mol Biol. 2017 Oct 27;429(21):3168-3180. doi: 10.1016/j.jmb.2016.08.031. Epub 2016 Sep 4.
8
R loops: new modulators of genome dynamics and function.
Nat Rev Genet. 2015 Oct;16(10):583-97. doi: 10.1038/nrg3961. Epub 2015 Sep 15.
9
Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.
Front Genet. 2015 Jun 3;6:192. doi: 10.3389/fgene.2015.00192. eCollection 2015.
10
Breaking bad: R-loops and genome integrity.
Trends Cell Biol. 2015 Sep;25(9):514-22. doi: 10.1016/j.tcb.2015.05.003. Epub 2015 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验