Suppr超能文献

评估一种新风险因素在骨折风险预测方面的改善:一项模拟研究。

Measuring improvement in fracture risk prediction for a new risk factor: a simulation.

作者信息

Lix Lisa M, Leslie William D, Majumdar Sumit R

机构信息

Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.

Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.

出版信息

BMC Res Notes. 2018 Jan 22;11(1):62. doi: 10.1186/s13104-018-3178-z.

Abstract

OBJECTIVE

Improvements in clinical risk prediction models for osteoporosis-related fracture can be evaluated using area under the receiver operating characteristic (AUROC) curve and calibration, as well as reclassification statistics such as the net reclassification improvement (NRI) and integrated discrimination improvement (IDI) statistics. Our objective was to compare the performance of these measures for assessing improvements to an existing fracture risk prediction model. We simulated the effect of a new, randomly-generated risk factor on prediction of major osteoporotic fracture (MOF) for the internationally-validated FRAX model in a cohort from the Manitoba Bone Mineral Density (BMD) Registry.

RESULTS

The study cohort was comprised of 31,999 women 50+ years of age; 9.9% sustained at least one MOF in a mean follow-up of 8.4 years. The original prediction model had good discriminative performance, with AUROC = 0.706 and calibration (ratio of observed to predicted risk) of 0.990. The addition of the simulated risk factor resulted in improvements in NRI and IDI for most investigated conditions, while AUROC decreased and changes in calibration were negative. Reclassification measures may give different information than discrimination and calibration about the performance of new clinical risk factors.

摘要

目的

可使用受试者操作特征曲线下面积(AUROC)、校准以及重新分类统计量(如净重新分类改善(NRI)和综合鉴别改善(IDI)统计量)来评估骨质疏松症相关骨折临床风险预测模型的改进情况。我们的目的是比较这些指标在评估对现有骨折风险预测模型的改进方面的性能。我们在马尼托巴骨密度(BMD)登记处的一个队列中,模拟了一个新的随机生成的风险因素对国际验证的FRAX模型预测主要骨质疏松性骨折(MOF)的影响。

结果

研究队列包括31999名50岁及以上的女性;在平均8.4年的随访中,9.9%的人发生了至少一次主要骨质疏松性骨折。原始预测模型具有良好的鉴别性能,AUROC = 0.706,校准(观察到的风险与预测风险的比率)为0.990。在大多数研究条件下,添加模拟风险因素导致NRI和IDI有所改善,而AUROC下降,校准变化为负值。重新分类指标可能会提供与鉴别和校准不同的关于新临床风险因素性能的信息。

相似文献

10
FRAX predicts fracture risk in kidney transplant recipients.FRAX 预测肾移植受者的骨折风险。
Transplantation. 2014 May 15;97(9):940-5. doi: 10.1097/01.TP.0000438200.84154.1a.

本文引用的文献

4
Comparison between various fracture risk assessment tools.各种骨折风险评估工具的比较。
Osteoporos Int. 2014 Jan;25(1):1-21. doi: 10.1007/s00198-013-2409-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验