From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt, Germany (Y.M., T.L., S.F.G., R.A.B., S.D.); Department of Cardiology, Internal Medicine III, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany (A.M.Z.); Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G., T.B.); Department of Medicine, Hematology, and Oncology, Goethe University Frankfurt, Germany (L.D., M.A.R.); and Partner site Rhein/Main, German Center of Cardiovascular Research DZHK, Frankfurt (Y.M., T.L., S.F.G., T.B., A.M.Z., R.A.B., S.D.).
Circ Res. 2018 Mar 2;122(5):670-677. doi: 10.1161/CIRCRESAHA.117.312310. Epub 2018 Jan 22.
Vascularization is critical to maintain organ function. Although many molecular pathways were shown to control vessel growth, the genuine process of capillary formation under different conditions is unclear.
Here, we elucidated whether clonal expansion contributes to vessel growth by using Confetti mice for genetic tracing of clonally expanding endothelial cells (ECs).
In postnatal retina angiogenesis, we predominantly observed random distribution of fluorescence labeled ECs indicative of random integration or cell mixing. However, in models of pathophysiological angiogenesis (retinopathy of prematurity), as well as ischemia-induced angiogenesis in limbs and hearts, clonally expanded ECs were significantly more abundant (≤69%). Inhibition of VEGFR2 (vascular endothelial growth factor receptor 2) reduced clonal expansion after ischemia. To determine the mechanism underlying clonal expansion in vivo, we assessed gene expression specifically in clonally expanded ECs selected by laser capture microscopy. Clonally expanded ECs showed an enrichment of genes involved in endothelial-to-mesenchymal transition. Moreover, hypoxia-induced clonal expansion and endothelial-to-mesenchymal transition in ECs in vitro suggesting that hypoxia-enhanced endothelial-to-mesenchymal transition might contribute to vessel growth under ischemia.
Our data suggest that neovascularization after ischemia is partially mediated by clonal expansion of ECs. Identification of the pathways that control clonal expansion may provide novel tools to augment therapeutic neovascularization or treat pathological angiogenesis.
血管生成对于维持器官功能至关重要。尽管已经有许多分子途径被证明可以控制血管生长,但在不同条件下真正的毛细血管形成过程尚不清楚。
本研究使用 Confetti 小鼠对克隆扩增的内皮细胞(EC)进行遗传追踪,以阐明克隆扩增是否有助于血管生长。
在出生后视网膜血管生成中,我们主要观察到荧光标记的 EC 呈随机分布,表明随机整合或细胞混合。然而,在病理性血管生成(早产儿视网膜病变)模型以及肢体和心脏缺血诱导的血管生成中,克隆扩增的 EC 明显更为丰富(≤69%)。VEGFR2(血管内皮生长因子受体 2)的抑制减少了缺血后的克隆扩增。为了确定体内克隆扩增的机制,我们通过激光捕获显微镜专门评估了克隆扩增的 EC 中的基因表达。克隆扩增的 EC 表现出与内皮细胞向间充质转化相关的基因富集。此外,体外缺氧诱导的克隆扩增和内皮细胞向间充质转化表明,缺氧增强的内皮细胞向间充质转化可能有助于缺血下的血管生长。
我们的数据表明,缺血后的新生血管形成部分是由 EC 的克隆扩增介导的。鉴定控制克隆扩增的途径可能为增强治疗性新生血管形成或治疗病理性血管生成提供新的工具。