Suppr超能文献

氨基糖苷类药物药代动力学-药效学分析在儿科癌症患者中的应用。

Amikacin Pharmacokinetic-Pharmacodynamic Analysis in Pediatric Cancer Patients.

机构信息

Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA

出版信息

Antimicrob Agents Chemother. 2018 Mar 27;62(4). doi: 10.1128/AAC.01781-17. Print 2018 Apr.

Abstract

We performed pharmacokinetic-pharmacodynamic (PK-PD) and simulation analyses to evaluate a standard amikacin dose of 15 mg/kg once daily in children with cancer and to determine an optimal dosing strategy. A population pharmacokinetic model was developed from clinical data collected in 34 pediatric patients and used in a simulation study to predict the population probability of various dosing regimens to achieve accepted safety (steady-state unbound trough plasma concentration [] of <10 mg/liter)- and efficacy (free, unbound plasma concentration-to-MIC ratio [/MIC] of ≥8)-linked targets. In addition, an adaptive resistance PD (ARPD) model of was built based on literature time-kill curve data and linked to the PK model to perform PK-ARPD simulations and compare results with those of the probability approach. Using the probability approach, an amikacin dose of 60 mg/kg administered once daily is expected to achieve the target /MIC in 80% of pediatric patients weighing 8 to 70 kg with a 97.5% probability, and almost all patients were predicted to have of <10 mg/liter. However, PK-ARPD simulation predicted that 60 mg/kg/day is unlikely to suppress bacterial resistance with repeated dosing. Furthermore, PK-ARPD simulation suggested that amikacin at 90 mg/kg, given in two divided doses (45 mg/kg twice a day), is expected to hit safety and efficacy targets and is associated with a lower rate of bacterial resistance. The disagreement between the two methods is due to the inability of the probability approach to predict development of drug resistance with repeated dosing. This originates from the use of PK-PD indices based on the MIC that neglects measurement errors, ignores the time course dynamic nature of bacterial growth and killing, and incorrectly assumes the MIC to be constant during treatment.

摘要

我们进行了药代动力学-药效学(PK-PD)和模拟分析,以评估癌症儿童每天一次给予标准剂量 15 毫克/公斤阿米卡星的疗效,并确定最佳给药策略。从 34 名儿科患者的临床数据中开发了一个群体药代动力学模型,并在模拟研究中使用该模型预测各种给药方案的群体概率,以实现可接受的安全性(稳态无结合物血药浓度[ ]<10 毫克/升)和疗效(游离、无结合物血浆浓度与 MIC 比值 [/MIC]≥8)相关目标。此外,基于文献时间杀伤曲线数据建立了一个 的适应性耐药 PD(ARPD)模型,并将其与 PK 模型连接起来进行 PK-ARPD 模拟,并将结果与概率方法进行比较。使用概率方法,预计每天一次给予 60 毫克/公斤的阿米卡星剂量在 8 至 70 公斤体重的 80%儿科患者中达到目标 /MIC 的概率为 80%,且几乎所有患者均预测其 [ ]<10 毫克/升。然而,PK-ARPD 模拟预测重复给药时 60 毫克/公斤/天不太可能抑制细菌耐药性。此外,PK-ARPD 模拟表明,每天两次给予 90 毫克/公斤(45 毫克/公斤,每天两次)的阿米卡星有望达到安全性和疗效目标,并与较低的细菌耐药率相关。两种方法之间的差异是由于概率方法无法预测重复给药时耐药性的发展。这源于使用基于 MIC 的 PK-PD 指标,该指标忽略了测量误差,忽略了细菌生长和杀伤的时间过程动态特性,并且错误地假设 MIC 在治疗过程中是恒定的。

相似文献

引用本文的文献

3
Amikacin Therapy in Japanese Pediatric Patients: Narrative Review.阿米卡星治疗日本儿科患者:叙事性综述。
Int J Environ Res Public Health. 2022 Feb 10;19(4):1972. doi: 10.3390/ijerph19041972.

本文引用的文献

4
Optimizing the initial amikacin dosage in adults.优化成人初始阿米卡星剂量
Antimicrob Agents Chemother. 2015 Nov;59(11):7094-6. doi: 10.1128/AAC.01032-15. Epub 2015 Aug 17.
7
Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs.抗菌药物的药代动力学-药效学建模。
Pharmacol Rev. 2013 Jun 26;65(3):1053-90. doi: 10.1124/pr.111.005769. Print 2013 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验