Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
J Pharmacokinet Pharmacodyn. 2016 Dec;43(6):583-596. doi: 10.1007/s10928-016-9487-8. Epub 2016 Oct 11.
Taking parameter uncertainty into account is key to make drug development decisions such as testing whether trial endpoints meet defined criteria. Currently used methods for assessing parameter uncertainty in NLMEM have limitations, and there is a lack of diagnostics for when these limitations occur. In this work, a method based on sampling importance resampling (SIR) is proposed, which has the advantage of being free of distributional assumptions and does not require repeated parameter estimation. To perform SIR, a high number of parameter vectors are simulated from a given proposal uncertainty distribution. Their likelihood given the true uncertainty is then approximated by the ratio between the likelihood of the data given each vector and the likelihood of each vector given the proposal distribution, called the importance ratio. Non-parametric uncertainty distributions are obtained by resampling parameter vectors according to probabilities proportional to their importance ratios. Two simulation examples and three real data examples were used to define how SIR should be performed with NLMEM and to investigate the performance of the method. The simulation examples showed that SIR was able to recover the true parameter uncertainty. The real data examples showed that parameter 95 % confidence intervals (CI) obtained with SIR, the covariance matrix, bootstrap and log-likelihood profiling were generally in agreement when 95 % CI were symmetric. For parameters showing asymmetric 95 % CI, SIR 95 % CI provided a close agreement with log-likelihood profiling but often differed from bootstrap 95 % CI which had been shown to be suboptimal for the chosen examples. This work also provides guidance towards the SIR workflow, i.e.,which proposal distribution to choose and how many parameter vectors to sample when performing SIR, using diagnostics developed for this purpose. SIR is a promising approach for assessing parameter uncertainty as it is applicable in many situations where other methods for assessing parameter uncertainty fail, such as in the presence of small datasets, highly nonlinear models or meta-analysis.
考虑参数不确定性对于做出药物开发决策至关重要,例如检验试验终点是否符合定义的标准。目前在 NLMEM 中用于评估参数不确定性的方法存在局限性,并且缺乏这些局限性何时发生的诊断工具。在这项工作中,提出了一种基于抽样重要性重采样(SIR)的方法,该方法的优点是无需分布假设,并且不需要重复参数估计。为了执行 SIR,从给定的提议不确定性分布中模拟大量参数向量。然后,通过每个向量的似然除以数据的似然来近似给定真实不确定性的每个向量的似然,称为重要比。通过根据与它们的重要比成比例的概率对参数向量进行重采样来获得非参数不确定性分布。使用两个模拟示例和三个真实数据示例来定义如何使用 NLMEM 执行 SIR,并研究该方法的性能。模拟示例表明,SIR 能够恢复真实的参数不确定性。真实数据示例表明,当 95%置信区间(CI)对称时,使用 SIR、协方差矩阵、自举和对数似然分析获得的参数 95%CI 通常一致。对于显示不对称 95%CI 的参数,SIR 95%CI 与对数似然分析密切一致,但通常与自举 95%CI 不同,自举 95%CI 已被证明对于所选示例并不理想。这项工作还提供了有关 SIR 工作流程的指导,即选择哪种提议分布以及在执行 SIR 时要采样多少个参数向量,使用为此目的开发的诊断工具。SIR 是一种评估参数不确定性的有前途的方法,因为它适用于其他评估参数不确定性的方法失败的许多情况,例如在数据集较小、模型高度非线性或荟萃分析的情况下。