Suppr超能文献

利用点扩散函数估计在双光子激发显微镜中进行高分辨率成像。

High-resolution imaging in two-photon excitation microscopy using estimations of the point spread function.

作者信息

Doi Atsushi, Oketani Ryosuke, Nawa Yasunori, Fujita Katsumasa

机构信息

Olympus Corporation, 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512, Japan.

Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

Biomed Opt Express. 2017 Dec 13;9(1):202-213. doi: 10.1364/BOE.9.000202. eCollection 2018 Jan 1.

Abstract

We present a technique for improving the spatial resolution of two-photon excitation microscopy; our technique combines annular illumination with an estimation of the point spread function (PSF) used for deconvolution. For the estimation of the PSF, we developed a technique called autocorrelation scanning, in which a sample is imaged by the scanning of two excitation foci that are overlapped over various distances. The image series obtained with the variation of the distance between the two foci provides the autocorrelation function of the PSF, which can be used to estimate the PSF at specific positions within a sample. We proved the principle and the effectiveness of this technique through observations of a fluorescent biological sample, and we confirmed that the improvement in the spatial resolution was ~1.7 times that of typical two-photon excitation microscopy by observing a mouse brain phantom at a depth of 200 µm.

摘要

我们提出了一种提高双光子激发显微镜空间分辨率的技术;我们的技术将环形照明与用于去卷积的点扩散函数(PSF)估计相结合。为了估计PSF,我们开发了一种称为自相关扫描的技术,其中通过扫描在不同距离上重叠的两个激发焦点对样品进行成像。随着两个焦点之间距离的变化获得的图像序列提供了PSF的自相关函数,可用于估计样品内特定位置的PSF。我们通过对荧光生物样品的观察证明了该技术的原理和有效性,并且通过观察深度为200 µm的小鼠脑模型,我们确认空间分辨率的提高是典型双光子激发显微镜的约1.7倍。

相似文献

1
High-resolution imaging in two-photon excitation microscopy using estimations of the point spread function.
Biomed Opt Express. 2017 Dec 13;9(1):202-213. doi: 10.1364/BOE.9.000202. eCollection 2018 Jan 1.
2
Image scanning microscopy with multiphoton excitation or Bessel beam illumination.
J Opt Soc Am A Opt Image Sci Vis. 2020 Oct 1;37(10):1639-1649. doi: 10.1364/JOSAA.402048.
3
Saturated two-photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth.
J Biophotonics. 2019 Jan;12(1):e201800136. doi: 10.1002/jbio.201800136. Epub 2018 Aug 30.
4
Saturation modified point spread functions in two-photon microscopy.
Microsc Res Tech. 2004 Jun 1;64(2):135-41. doi: 10.1002/jemt.20071.
6
Saturated two-photon excitation fluorescence microscopy with core-ring illumination.
Opt Lett. 2017 Feb 1;42(3):571-574. doi: 10.1364/OL.42.000571.
7
Two-photon PSF-engineered image scanning microscopy.
Opt Lett. 2019 Feb 15;44(4):895-898. doi: 10.1364/OL.44.000895.
8
Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach.
J Opt Soc Am A Opt Image Sci Vis. 2001 Nov;18(11):2833-45. doi: 10.1364/josaa.18.002833.
9
Image scanning microscopy: a vectorial physical optics analysis.
Opt Express. 2024 Jan 15;32(2):1524-1539. doi: 10.1364/OE.500957.
10
Multispot point spread function for multiphoton fluorescence microscopy.
Rev Sci Instrum. 2009 Sep;80(9):096104. doi: 10.1063/1.3226658.

引用本文的文献

3
Blind deconvolution of second harmonic microscopy images of the living human eye.
Biomed Opt Express. 2023 Apr 19;14(5):2117-2128. doi: 10.1364/BOE.486989. eCollection 2023 May 1.
4
Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer.
Pharmaceutics. 2023 Mar 15;15(3):946. doi: 10.3390/pharmaceutics15030946.
5
Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions.
Front Immunol. 2022 Jan 3;12:804159. doi: 10.3389/fimmu.2021.804159. eCollection 2021.
6
Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors.
Korean J Physiol Pharmacol. 2019 Jul;23(4):237-249. doi: 10.4196/kjpp.2019.23.4.237. Epub 2019 Jun 25.
7
Tissue Clearing and Its Application to Bone and Dental Tissues.
J Dent Res. 2019 Jun;98(6):621-631. doi: 10.1177/0022034519844510. Epub 2019 Apr 22.

本文引用的文献

1
Saturated two-photon excitation fluorescence microscopy with core-ring illumination.
Opt Lett. 2017 Feb 1;42(3):571-574. doi: 10.1364/OL.42.000571.
2
3D super-resolved in vitro multiphoton microscopy by saturation of excitation.
Opt Express. 2015 Aug 24;23(17):22667-75. doi: 10.1364/OE.23.022667.
3
Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
Nat Commun. 2015 Jun 15;6:7276. doi: 10.1038/ncomms8276.
4
Super-resolution two-photon microscopy via scanning patterned illumination.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042703. doi: 10.1103/PhysRevE.91.042703. Epub 2015 Apr 7.
5
Rapid adaptive optical recovery of optimal resolution over large volumes.
Nat Methods. 2014 Jun;11(6):625-8. doi: 10.1038/nmeth.2925. Epub 2014 Apr 13.
6
Introduction to super-resolution microscopy.
Microscopy (Oxf). 2014 Jun;63(3):177-92. doi: 10.1093/jmicro/dfu007. Epub 2014 Mar 25.
7
Virtual spatial overlap modulation microscopy for resolution improvement.
Opt Express. 2013 Dec 2;21(24):30007-18. doi: 10.1364/OE.21.030007.
8
Advances in multiphoton microscopy technology.
Nat Photonics. 2013 Feb 1;7(2):93-101. doi: 10.1038/nphoton.2012.361.
10
Direct wavefront sensing in adaptive optical microscopy using backscattered light.
Appl Opt. 2013 Aug 1;52(22):5523-32. doi: 10.1364/AO.52.005523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验