Suppr超能文献

808nm 激发能量迁移上转换纳米粒子由 Nd-Trinity 系统驱动,具有可调色彩和卓越的发光性能。

808 nm excited energy migration upconversion nanoparticles driven by a Nd-Trinity system with color-tunability and superior luminescence properties.

机构信息

Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.

出版信息

Nanoscale. 2018 Feb 8;10(6):2790-2803. doi: 10.1039/c7nr07026h.

Abstract

We have developed energy migration upconversion (EMU) nanoparticles (UCNPs) with optimal Nd-sensitization under excitation of an 808 nm laser to avoid over-heating effects caused by a 980 nm laser while maximizing the excitation efficiency. To realize efficient 808 nm sensitization, a "Nd-Trinity system" was implemented in the energy migration upconversion (EMU) cores (NaGdF:Yb,Tm@NaGdF:Yb,X, X = Eu/Tb), resulting in a core-multishell structure of EMU cores (accumulation layer@activation layer)@transition layer@harvest layer@activation layer. The spatially separated dopants and optimized Yb/Nd content effectively prevented severe quenching events in the UCNPs and their Nd-sensitized EMU-based photoluminescence mechanism was studied under 808 nm excitation. These Nd-Trinity EMU system UCNPs presented enhanced upconversion luminescence and prolonged lifetime compared to the 980 nm excited UCNPs of the EMU system. It is proposed that 975 nm and 1056 nm NIR photons induced from the Nd → Yb energy transfer facilitate the Tm accumulation process due to the matched energy gaps, which contributes to the extended lifetimes. More importantly, the synthesized UCNPs had a small average size of sub-15 nm and they not only exhibited color-tunability via Eu/Tb activators, but also released a larger portion of Tm red emission at 647 nm and had better penetration ability in water under 808 nm excitation, which are favorable for bioimaging applications.

摘要

我们研制了一种在 808nm 激光激发下具有最佳 Nd 敏化作用的能量传递上转换纳米粒子(UCNP),以避免 980nm 激光引起的过热效应,同时最大限度地提高激发效率。为了实现高效的 808nm 敏化,在能量传递上转换(EMU)核(NaGdF:Yb,Tm@NaGdF:Yb,X,X = Eu/Tb)中采用了“Nd-Trinity 系统”,从而形成了 EMU 核(积累层@激活层)@过渡层@收集层@激活层的核壳结构。空间分离的掺杂剂和优化的 Yb/Nd 含量有效地防止了 UCNP 中的严重猝灭事件,并在 808nm 激发下研究了它们的 Nd 敏化 EMU 基光致发光机制。与 EMU 系统的 980nm 激发 UCNP 相比,这些 Nd-Trinity EMU 系统 UCNP 呈现出增强的上转换发光和延长的寿命。据提出,由于匹配的能隙,975nm 和 1056nm 的 NIR 光子从 Nd→Yb 能量转移诱导有利于 Tm 积累过程,这有助于延长寿命。更重要的是,合成的 UCNP 具有亚 15nm 的小平均尺寸,它们不仅通过 Eu/Tb 激活剂表现出可调的颜色,而且在 808nm 激发下以更大比例释放 647nm 的 Tm 红光发射,并且在水中具有更好的穿透能力,这有利于生物成像应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验