Suppr超能文献

敏化量子点太阳能电池的能量转换效率超过 12%。

Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.

机构信息

Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.

College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.

出版信息

Adv Mater. 2018 Mar;30(11). doi: 10.1002/adma.201705746. Epub 2018 Jan 23.

Abstract

The improvement of sunlight utilization is a fundamental approach for the construction of high-efficiency quantum-dot-based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn-Cu-In-Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO films via the control of the interactions between QDs and TiO films using 3-mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe-alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon-to-electron conversion efficiency is significantly improved over single QD-based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (V = 0.752 V, J = 27.39 mA cm , FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid-junction QD-based solar cells reported.

摘要

提高太阳光利用率是构建高效量子点基太阳能电池(QDSCs)的根本方法。为了提高光捕获效率,本工作通过在介孔 TiO 薄膜上顺序沉积预先合成的 Zn-Cu-In-Se(ZCISe)和 CdSe 量子点(QDs),并用 3-巯基丙酸双功能链接剂控制 QD 与 TiO 薄膜之间的相互作用,制备了共敏化光阳极。由于 ZCISe 合金量子点具有宽的光吸收范围和 CdSe QD 具有高消光系数的协同效应,与基于单量子点的 QDSCs 相比,入射光子-电子转换效率得到了显著提高。研究发现,通过调整引入的 CdSe QD 的尺寸,可以优化共敏化光阳极的性能。结合钛网支撑介孔碳作为对电极和改性多硫化物溶液作为电解质,实现了高达 12.75%的冠军功率转换效率(V = 0.752 V,J = 27.39 mA cm ,FF = 0.619),就目前所知,这是报道的液体结 QD 基太阳能电池的最高效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验