Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, China.
ACS Nano. 2012 May 22;6(5):3982-91. doi: 10.1021/nn300278z. Epub 2012 Apr 24.
Presynthesized high-quality CdS/CdSe inverted type-I core/shell structure QDs have been deposited onto TiO(2) electrodes after first coating with bifunctional linker molecules, mercaptopropionic acid (MPA), and the resulting quantum dot sensitized solar cells (QDSCs) exhibited record conversion efficiency of 5.32% (V(oc) = 0.527 V, J(sc) = 18.02 mA/cm(2), FF = 0.56) under simulated AM 1.5, 100 mW cm(-2) illumination. CdS/CdSe QDs with different CdSe shell thicknesses and different corresponding absorption onsets were prepared via the well-developed organometallic high-temperature injection method. MPA-capped water-dispersible QDs were then obtained via ligand exchange from the initial organic ligand capped oil-dispersible QDs. The QD-sensitized TiO(2) electrodes were facilely prepared by pipetting the MPA-capped CdS/CdSe QD aqueous solution onto the TiO(2) film, followed by a covering process with a ZnS layer and a postsintering process at 300 °C. Polysulfide electrolyte and Cu(2)S counterelectrode were used to provide higher photocurrents and fill factors of the constructed cell devices. The characteristics of these QDSCs were studied in more detail by optical measurements, incidental photo-to-current efficiency measurements, and impedance spectroscopy. With the combination of the modified deposition technique with use of linker molecule MPA-capped water-soluble QDs and well-developed inverted type-I core/shell structure of the sensitizer together with the sintering treatment of QD-bound TiO(2) electrodes, the resulting CdS/CdSe-sensitized solar cells show a record photovoltaic performance with a conversion efficiency of 5.32%.
经巯基丙酸(MPA)双功能连接分子预处理后,将预先合成的高质量 CdS/CdSe 反型 I 型核/壳结构量子点沉积在 TiO2 电极上,所得量子点敏化太阳能电池(QDSC)在模拟 AM1.5、100mWcm-2 光照下表现出创纪录的 5.32%的转换效率(Voc=0.527V,Jsc=18.02mA/cm2,FF=0.56)。通过成熟的有机高温注入法制备了具有不同 CdSe 壳层厚度和相应不同吸收起始点的 CdS/CdSe QD。通过从初始有机配体封端的油分散 QD 进行配体交换,得到了 MPA 封端的水分散 QD。通过将 MPA 封端的 CdS/CdSe QD 水溶液滴在 TiO2 薄膜上,然后用 ZnS 层覆盖并在 300°C 下进行后烧结处理,制备了 QD 敏化的 TiO2 电极。使用多硫化物电解质和 Cu2S 对电极来提供更高的光电流和填充因子的构建的电池器件。通过光学测量、偶然光电电流效率测量和阻抗谱更详细地研究了这些 QDSC 的特性。通过结合改进的沉积技术,使用链接分子 MPA 封端的水溶性 QD 和成熟的反型 I 型核/壳结构敏化剂,以及 QD 结合的 TiO2 电极的烧结处理,所得 CdS/CdSe 敏化太阳能电池的光电转换效率为 5.32%,达到了创纪录的光伏性能。