Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
Hum Mol Genet. 2018 Apr 1;27(7):1174-1185. doi: 10.1093/hmg/ddy032.
Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.
先天性肌营养不良症(CMD)的特征是骨骼肌进行性无力和退化。在几种 CMD 形式中,α- dystroglycan(α-DG)的异常糖基化导致统称为 dystroglycanopathy 的病症,其与中枢神经系统受累有关。我们最近证明,负责 Fukuyama 先天性肌营养不良症的基因 fukutin 编码了 dystroglycan 功能所必需的肌醇磷酸转移酶。Dystroglycanopathy 患者的脑病理学通常包括鹅卵石样无脑回裂、智力迟钝和难治性癫痫;然而,一些患者表现出平均智力水平,几乎没有或没有结构缺陷。目前,尚无有效的 dystroglycanopathy 治疗方法,产生这种广泛临床谱的机制尚不清楚。在这里,我们分析了四种不同的 dystroglycanopathy 小鼠模型:两种脑选择性 fukutin 条件性敲除株(神经干细胞选择性 Nestin-fukutin-cKO 和前脑选择性 Emx1-fukutin-cKO)、具有 founder 反转录插入 fukutin 基因的 FukutinHp 株,以及自发的 Large-mutant Largemyd 株。这些模型表现出脑病理学严重程度的变化,复制了 dystroglycanopathy 的临床异质性。发育中的皮质的免疫荧光分析表明,当皮质发育不良尚未明显时,α-DG 的残余糖基化可能有助于随后的表型异质性。令人惊讶的是,在 E12.5 时将 fukutin 或 Large 递送到 Emx1-fukutin-cKO 和 Largemyd/myd 小鼠的大脑中分别预防了严重的脑畸形。这些发现表明功能糖基化的 α-DG 的时空持久性可能对大脑发育至关重要,并且在胎儿阶段进行糖基化修饰可能是 dystroglycanopathy 的一种潜在治疗策略。