Suppr超能文献

ATPbind:通过序列特征分析与结构比较相结合的方法进行准确的蛋白质-ATP 结合位点预测。

ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons.

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology , Xiaolingwei 200, Nanjing, 210094, P. R. China.

Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw, Ann Arbor, Michigan 48109-2218, United States.

出版信息

J Chem Inf Model. 2018 Feb 26;58(2):501-510. doi: 10.1021/acs.jcim.7b00397. Epub 2018 Feb 8.

Abstract

Protein-ATP interactions are ubiquitous in a wide variety of biological processes. Correctly locating ATP binding sites from protein information is an important but challenging task for protein function annotation and drug discovery. However, there is no method that can optimally identify ATP binding sites for different proteins. In this study, we report a new composite predictor, ATPbind, for ATP binding sites by integrating the outputs of two template-based predictors (i.e., S-SITE and TM-SITE) and three discriminative sequence-driven features of proteins: position specific scoring matrix, predicted secondary structure, and predicted solvent accessibility. In ATPbind, we assembled multiple support vector machines (SVMs) based on a random undersampling technique to cope with the serious imbalance phenomenon between the numbers of ATP binding sites and of non-ATP binding sites. We also constructed a new gold-standard benchmark data set consisting of 429 ATP binding proteins from the PDB database to evaluate and compare the proposed ATPbind with other existing predictors. Starting from a query sequence and predicted I-TASSER models, ATPbind can achieve an average accuracy of 72%, covering 62% of all ATP binding sites while achieving a Matthews correlation coefficient value that is significantly higher than that of other state-of-the-art predictors.

摘要

蛋白质与 ATP 的相互作用在各种生物过程中普遍存在。正确地从蛋白质信息中定位 ATP 结合位点是蛋白质功能注释和药物发现的一项重要但具有挑战性的任务。然而,目前还没有一种方法可以针对不同的蛋白质最优地识别 ATP 结合位点。在这项研究中,我们通过整合两种基于模板的预测器(即 S-SITE 和 TM-SITE)的输出以及蛋白质的三个有区别的序列驱动特征(位置特异性评分矩阵、预测的二级结构和预测的溶剂可及性),报告了一种新的复合预测器 ATPbind,用于预测 ATP 结合位点。在 ATPbind 中,我们基于随机欠采样技术组装了多个支持向量机(SVM),以应对 ATP 结合位点和非 ATP 结合位点数量之间的严重不平衡现象。我们还构建了一个新的黄金标准基准数据集,包含来自 PDB 数据库的 429 个 ATP 结合蛋白,用于评估和比较所提出的 ATPbind 与其他现有预测器。从查询序列和预测的 I-TASSER 模型开始,ATPbind 可以实现平均准确率为 72%,涵盖 62%的所有 ATP 结合位点,同时实现的 Matthews 相关系数值明显高于其他最先进的预测器。

相似文献

1
ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons.
J Chem Inf Model. 2018 Feb 26;58(2):501-510. doi: 10.1021/acs.jcim.7b00397. Epub 2018 Feb 8.
3
Accurate prediction of protein-ATP binding residues using position-specific frequency matrix.
Anal Biochem. 2021 Aug 1;626:114241. doi: 10.1016/j.ab.2021.114241. Epub 2021 May 7.
4
Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Nov-Dec;14(6):1389-1398. doi: 10.1109/TCBB.2016.2616469. Epub 2016 Oct 11.
5
ATPdock: a template-based method for ATP-specific protein-ligand docking.
Bioinformatics. 2022 Jan 3;38(2):556-558. doi: 10.1093/bioinformatics/btab667.
6
Sequence-based predictor of ATP-binding residues using random forest and mRMR-IFS feature selection.
J Theor Biol. 2014 Nov 7;360:59-66. doi: 10.1016/j.jtbi.2014.06.037. Epub 2014 Jul 8.
8
Domain-based small molecule binding site annotation.
BMC Bioinformatics. 2006 Mar 17;7:152. doi: 10.1186/1471-2105-7-152.
9
Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines.
J Chem Inf Model. 2016 Oct 24;56(10):2115-2122. doi: 10.1021/acs.jcim.6b00320. Epub 2016 Sep 22.

引用本文的文献

1
A -unique effector with the CxNC motif enhances plant NDPK2 kinase activity to suppress plant immunity.
Sci Adv. 2025 Jun 20;11(25):eadt7970. doi: 10.1126/sciadv.adt7970. Epub 2025 Jun 18.
4
S-DCNN: prediction of ATP binding residues by deep convolutional neural network based on SMOTE.
Front Genet. 2025 Jan 6;15:1513201. doi: 10.3389/fgene.2024.1513201. eCollection 2024.
5
Unveiling the biosynthesis mechanism of novel lantibiotic homicorcin: an in silico analysis.
Sci Rep. 2024 Nov 21;14(1):28893. doi: 10.1038/s41598-024-80514-y.
8
DeepProSite: structure-aware protein binding site prediction using ESMFold and pretrained language model.
Bioinformatics. 2023 Dec 1;39(12). doi: 10.1093/bioinformatics/btad718.
9

本文引用的文献

1
Prediction of Protein Kinase-Ligand Interactions through 2.5D Kinochemometrics.
J Chem Inf Model. 2017 Jan 23;57(1):93-101. doi: 10.1021/acs.jcim.6b00520. Epub 2017 Jan 3.
2
Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
Bioinformatics. 2016 Nov 1;32(21):3260-3269. doi: 10.1093/bioinformatics/btw396. Epub 2016 Jul 4.
3
The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.
Nucleic Acids Res. 2015 Jan;43(Database issue):D345-56. doi: 10.1093/nar/gku1214. Epub 2014 Nov 26.
4
A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction.
PLoS One. 2014 Sep 17;9(9):e107676. doi: 10.1371/journal.pone.0107676. eCollection 2014.
5
6
Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):994-1008. doi: 10.1109/TCBB.2013.104.
7
Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design.
J Chem Inf Model. 2013 Nov 25;53(11):2781-91. doi: 10.1021/ci400257k. Epub 2013 Nov 13.
8
Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment.
Bioinformatics. 2013 Oct 15;29(20):2588-95. doi: 10.1093/bioinformatics/btt447. Epub 2013 Aug 23.
9
APoc: large-scale identification of similar protein pockets.
Bioinformatics. 2013 Mar 1;29(5):597-604. doi: 10.1093/bioinformatics/btt024. Epub 2013 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验