School of Computer Science and Engineering, Nanjing University of Science and Technology , Xiaolingwei 200, Nanjing, 210094, P. R. China.
Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw, Ann Arbor, Michigan 48109-2218, United States.
J Chem Inf Model. 2018 Feb 26;58(2):501-510. doi: 10.1021/acs.jcim.7b00397. Epub 2018 Feb 8.
Protein-ATP interactions are ubiquitous in a wide variety of biological processes. Correctly locating ATP binding sites from protein information is an important but challenging task for protein function annotation and drug discovery. However, there is no method that can optimally identify ATP binding sites for different proteins. In this study, we report a new composite predictor, ATPbind, for ATP binding sites by integrating the outputs of two template-based predictors (i.e., S-SITE and TM-SITE) and three discriminative sequence-driven features of proteins: position specific scoring matrix, predicted secondary structure, and predicted solvent accessibility. In ATPbind, we assembled multiple support vector machines (SVMs) based on a random undersampling technique to cope with the serious imbalance phenomenon between the numbers of ATP binding sites and of non-ATP binding sites. We also constructed a new gold-standard benchmark data set consisting of 429 ATP binding proteins from the PDB database to evaluate and compare the proposed ATPbind with other existing predictors. Starting from a query sequence and predicted I-TASSER models, ATPbind can achieve an average accuracy of 72%, covering 62% of all ATP binding sites while achieving a Matthews correlation coefficient value that is significantly higher than that of other state-of-the-art predictors.
蛋白质与 ATP 的相互作用在各种生物过程中普遍存在。正确地从蛋白质信息中定位 ATP 结合位点是蛋白质功能注释和药物发现的一项重要但具有挑战性的任务。然而,目前还没有一种方法可以针对不同的蛋白质最优地识别 ATP 结合位点。在这项研究中,我们通过整合两种基于模板的预测器(即 S-SITE 和 TM-SITE)的输出以及蛋白质的三个有区别的序列驱动特征(位置特异性评分矩阵、预测的二级结构和预测的溶剂可及性),报告了一种新的复合预测器 ATPbind,用于预测 ATP 结合位点。在 ATPbind 中,我们基于随机欠采样技术组装了多个支持向量机(SVM),以应对 ATP 结合位点和非 ATP 结合位点数量之间的严重不平衡现象。我们还构建了一个新的黄金标准基准数据集,包含来自 PDB 数据库的 429 个 ATP 结合蛋白,用于评估和比较所提出的 ATPbind 与其他现有预测器。从查询序列和预测的 I-TASSER 模型开始,ATPbind 可以实现平均准确率为 72%,涵盖 62%的所有 ATP 结合位点,同时实现的 Matthews 相关系数值明显高于其他最先进的预测器。