Yadav Mohit, Sarkar Sharmilee, Olymon Kaushika, Ray Suvendra Kumar, Kumar Aditya
Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India.
ACS Omega. 2023 Sep 16;8(38):34499-34515. doi: 10.1021/acsomega.3c03175. eCollection 2023 Sep 26.
The transcriptional regulator PehR regulates the synthesis of the extracellular plant cell wall-degrading enzyme polygalacturonase, which is essential in the bacterial wilt of plants caused by one of the most devastating plant phytopathogens, . The bacterium has a wide global distribution infecting many different plant species, resulting in massive agricultural and economic losses. Because the PehR molecular structure has not yet been determined and the structural consequences of PehR on ligand binding have not been thoroughly investigated, we have used an approach combined with experiments for the first time to characterize the PehR regulator from a local isolate (Tezpur, Assam, India) of the phytopathogenic bacterium F1C1. In this study, an approach was employed to model the 3D structure of the PehR regulator, followed by the binding analysis of different ligands against this regulatory protein. Molecular docking studies suggest that ATP has the highest binding affinity for the PehR regulator. By using molecular dynamics (MD) simulation analysis, involving root-mean-square deviation, root-mean-square fluctuations, hydrogen bonding, radius of gyration, solvent-accessible surface area, and principal component analysis, it was possible to confirm the sudden conformational changes of the PehR regulator caused by the presence of ATP. We used an approach to further validate the formation of the PehR-ATP complex. In this approach, recombinant DNA technology was used to clone, express, and purify the gene encoding the PehR regulator from F1C1. Purified PehR was used in ATP-binding experiments using fluorescence spectroscopy and Fourier transform infrared spectroscopy, the outcomes of which showed a potent binding to ATP. The putative PehR-ATP-binding analysis revealed the importance of the amino acids Lys, Glu, Arg, Arg, and Asp for the ATP-binding process, but further study is required to confirm this. It will be simpler to comprehend the catalytic mechanisms of a crucial PehR regulator process in with the aid of the ATP-binding process hints provided by these structural biology applications.
转录调节因子PehR调控细胞外植物细胞壁降解酶聚半乳糖醛酸酶的合成,聚半乳糖醛酸酶在由一种极具破坏性的植物病原菌引起的植物青枯病中至关重要。这种细菌在全球广泛分布,感染许多不同的植物物种,导致巨大的农业和经济损失。由于PehR的分子结构尚未确定,且PehR与配体结合的结构后果尚未得到充分研究,我们首次采用一种结合实验的方法,对来自植物病原菌F1C1的本地分离株(印度阿萨姆邦特兹布尔)的PehR调节因子进行了表征。在本研究中,采用一种方法对PehR调节因子的三维结构进行建模,随后对不同配体与该调节蛋白的结合进行分析。分子对接研究表明,ATP对PehR调节因子具有最高的结合亲和力。通过使用分子动力学(MD)模拟分析,包括均方根偏差、均方根波动、氢键、回转半径、溶剂可及表面积和主成分分析,有可能证实ATP的存在导致PehR调节因子的突然构象变化。我们采用一种方法进一步验证PehR - ATP复合物的形成。在这种方法中,利用重组DNA技术从F1C1中克隆、表达和纯化编码PehR调节因子的基因。纯化的PehR用于使用荧光光谱和傅里叶变换红外光谱的ATP结合实验,实验结果表明其与ATP有强烈结合。推测的PehR - ATP结合分析揭示了赖氨酸、谷氨酸、精氨酸、精氨酸和天冬氨酸对ATP结合过程的重要性,但需要进一步研究来证实这一点。借助这些结构生物学应用提供的ATP结合过程线索,将更易于理解F1C1中关键的PehR调节因子过程的催化机制。