拟南芥复合花序发育的遗传调控剖析。 你提供的原文似乎不完整,“in.”后面应该还有具体的物种等信息。以上是根据现有内容尽量完整翻译的结果。
Dissection of genetic regulation of compound inflorescence development in .
作者信息
Cheng Xiaofei, Li Guifen, Tang Yuhong, Wen Jiangqi
机构信息
Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
出版信息
Development. 2018 Feb 8;145(3):dev158766. doi: 10.1242/dev.158766.
Development of inflorescence architecture is controlled by genetic regulatory networks. (), (), () and () are core regulators for inflorescence development. To understand the regulation of compound inflorescence development, we characterized mutants of corresponding orthologous genes, , , () and , in , and analyzed expression patterns of these genes. Results indicate that , , and play specific roles in identity determination of primary inflorescence meristems, secondary inflorescence meristems, floral meristems and common primordia, respectively. Double mutation of and transforms compound inflorescences to simple flowers, whereas single mutation of changes the inflorescence branching pattern from monopodial to sympodial. Double mutant completely loses floral meristem identity. We conclude that inflorescence architecture in is controlled by spatiotemporal expression of , , and through reciprocal repression. Although this regulatory network shares similarity with the pea model, it has specificity in regulating inflorescence architecture in This study establishes as an excellent genetic model for understanding compound inflorescence development in related legume crops.
花序结构的发育受遗传调控网络控制。()、()、()和()是花序发育的核心调控因子。为了解复合花序发育的调控机制,我们对()中相应直系同源基因()、()、()和()的突变体进行了表征,并分析了这些基因的表达模式。结果表明,()、()、()和()分别在初级花序分生组织、次级花序分生组织、花分生组织和共同原基的身份确定中发挥特定作用。()和()的双突变将复合花序转变为单花,而()的单突变将花序分支模式从单轴变为合轴。双突变体()完全丧失花分生组织身份。我们得出结论,()中的花序结构受()、()、()和()的时空表达通过相互抑制来控制。尽管该调控网络与豌豆模型有相似之处,但在调控()的花序结构方面具有特异性。本研究将()确立为理解相关豆科作物复合花序发育的优秀遗传模型。