Suppr超能文献

可视化CMAT:一个用于选择和解释蛋白质家族中相关突变/共同进化残基的网络服务器。

The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.

作者信息

Suplatov Dmitry, Sharapova Yana, Timonina Daria, Kopylov Kirill, Švedas Vytas

机构信息

1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia.

出版信息

J Bioinform Comput Biol. 2018 Apr;16(2):1840005. doi: 10.1142/S021972001840005X. Epub 2017 Dec 28.

Abstract

The visualCMAT web-server was designed to assist experimental research in the fields of protein/enzyme biochemistry, protein engineering, and drug discovery by providing an intuitive and easy-to-use interface to the analysis of correlated mutations/co-evolving residues. Sequence and structural information describing homologous proteins are used to predict correlated substitutions by the Mutual information-based CMAT approach, classify them into spatially close co-evolving pairs, which either form a direct physical contact or interact with the same ligand (e.g. a substrate or a crystallographic water molecule), and long-range correlations, annotate and rank binding sites on the protein surface by the presence of statistically significant co-evolving positions. The results of the visualCMAT are organized for a convenient visual analysis and can be downloaded to a local computer as a content-rich all-in-one PyMol session file with multiple layers of annotation corresponding to bioinformatic, statistical and structural analyses of the predicted co-evolution, or further studied online using the built-in interactive analysis tools. The online interactivity is implemented in HTML5 and therefore neither plugins nor Java are required. The visualCMAT web-server is integrated with the Mustguseal web-server capable of constructing large structure-guided sequence alignments of protein families and superfamilies using all available information about their structures and sequences in public databases. The visualCMAT web-server can be used to understand the relationship between structure and function in proteins, implemented at selecting hotspots and compensatory mutations for rational design and directed evolution experiments to produce novel enzymes with improved properties, and employed at studying the mechanism of selective ligand's binding and allosteric communication between topologically independent sites in protein structures. The web-server is freely available at https://biokinet.belozersky.msu.ru/visualcmat and there are no login requirements.

摘要

VisualCMAT网络服务器旨在通过提供一个直观且易于使用的界面来分析相关突变/共同进化残基,辅助蛋白质/酶生物化学、蛋白质工程和药物发现领域的实验研究。描述同源蛋白质的序列和结构信息用于通过基于互信息的CMAT方法预测相关取代,将它们分类为空间上接近的共同进化对,这些对要么形成直接的物理接触,要么与同一配体(例如底物或晶体学水分子)相互作用,以及长程相关性,通过存在统计学上显著的共同进化位置来注释和排列蛋白质表面的结合位点。VisualCMAT的结果经过组织以便于进行可视化分析,并且可以作为一个包含丰富内容的一体化PyMol会话文件下载到本地计算机,该文件具有与预测的共同进化的生物信息学、统计学和结构分析相对应的多层注释,或者使用内置的交互式分析工具在线进一步研究。在线交互性通过HTML5实现,因此既不需要插件也不需要Java。VisualCMAT网络服务器与Mustguseal网络服务器集成,后者能够利用公共数据库中有关蛋白质家族和超家族的结构和序列的所有可用信息构建大型结构指导的序列比对。VisualCMAT网络服务器可用于理解蛋白质中结构与功能之间的关系,用于选择热点和补偿性突变以进行合理设计和定向进化实验,从而产生具有改进特性的新型酶,还可用于研究选择性配体的结合机制以及蛋白质结构中拓扑独立位点之间的变构通讯。该网络服务器可在https://biokinet.belozersky.msu.ru/visualcmat免费获取,无需登录。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验