Institut National d'Optique, 2740 Einstein Street, Québec, QC, G1P 4S4, Canada.
Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montréal, QC, H3C 1K3, Canada.
Sci Rep. 2018 Jan 23;8(1):1418. doi: 10.1038/s41598-018-19801-4.
In recent years, additive manufacturing has been evolving towards flexible substrates for the fabrication of printable electronic devices and circuits. Generally polymer-based, these emerging substrates suffer from their heat sensitivity and low glass-transition temperatures. As such they require new highly-localized sintering processes to treat the electronic inks without damaging the polymer-based substrate. Laser-based sintering techniques have shown great promises to achieve high-quality sintering locally, while controlling the heat penetration to preserve the polymer substrates integrity. In this report, we explore new optimization pathways for dynamic laser-based sintering of conductive silver inks. Multiple passes of a pulsed laser are first performed while varying pulse train frequencies and pulse energies as an attempt to optimize the properties of the silver inks. Then, time-domain pulse shaping is performed to alter the properties of the conductive inks. Together, these pathways allow for the careful control of the time-domain laser energy distribution in order to achieve the best electronic performances while preserving the substrate's integrity. Sheet resistance values as low as 0.024Ω/□ are achieved, which is comparable to conventional 1-hour oven annealing, with the processing time dramatically reduced to the milisecond range. These results are supported by finite element modeling of the laser-induced thermal dynamics.
近年来,增材制造技术已经朝着用于制造可印刷电子设备和电路的柔性衬底方向发展。这些新兴衬底通常基于聚合物,它们存在耐热性差和玻璃化转变温度低的问题。因此,它们需要新的高度局部化的烧结工艺来处理电子油墨,而不会损坏基于聚合物的衬底。基于激光的烧结技术在实现高质量局部烧结方面显示出巨大的潜力,同时控制热渗透以保持聚合物衬底的完整性。在本报告中,我们探索了动态激光烧结导电银油墨的新优化途径。首先,通过多次脉冲激光扫描,同时改变脉冲串频率和脉冲能量,尝试优化银油墨的性能。然后,进行时域脉冲整形以改变导电油墨的性能。这些途径共同允许仔细控制时域激光能量分布,以在不破坏衬底完整性的情况下实现最佳的电子性能。实现了低至 0.024Ω/□ 的方阻值,这与传统的 1 小时烤箱退火相当,但处理时间显著缩短到毫秒级。这些结果得到了激光诱导热动力学的有限元模拟的支持。