1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.
2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.
Exp Biol Med (Maywood). 2018 Mar;243(5):451-472. doi: 10.1177/1535370218754524. Epub 2018 Jan 24.
Ca release from the endoplasmic reticulum is an important component of Ca signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca from the endoplasmic reticulum is coupled to the activation of store-operated Ca entry into cells. Store-operated Ca entry provides Ca for replenishing depleted endoplasmic reticulum Ca stores and a Ca signal that regulates Ca-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca stores following G protein-coupled receptor activation with the induction of store-operated Ca entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca concentration within the endoplasmic reticulum lumen and activators of Ca release-activated Ca channels. Emerging evidence indicates that in addition to their role in Ca release-activated Ca channel gating and store-operated Ca entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
内质网钙离子释放是细胞内钙离子信号转导的一个重要组成部分,它控制着真核细胞中许多生理过程。内质网钙离子释放与储存操作钙离子进入细胞的激活相关联。储存操作钙离子进入为耗尽的内质网钙离子储存提供钙离子,并产生调节钙离子依赖的细胞内生化事件的钙离子信号。连接 G 蛋白偶联受体激活后内质网钙离子释放与储存操作钙离子进入的诱导的关键是基质相互作用分子(STIM1 和 STIM2)。这些高度同源的内质网跨膜蛋白作为内质网腔钙离子浓度的传感器,以及钙离子释放激活的钙离子通道的激活剂发挥作用。新出现的证据表明,除了在钙离子释放激活的钙离子通道门控和储存操作钙离子进入中的作用外,STIM1 和 STIM2 还调节其他细胞信号事件。最近的研究表明,STIM 表达和功能的破坏与几种疾病的发病机制有关,包括自身免疫性疾病、癌症、心血管疾病和肌病。在这里,我们提供了关于 STIM1 和 STIM2 的分子生理学和病理生理学的最新进展概述。影响说明细胞内钙离子信号是细胞生理学的一个基本重要调节因子。最近的研究表明,在内质网(ER)膜中表达的钙离子结合基质相互作用分子(Stim1 和 Stim2)是真核生物钙离子信号转导的重要组成部分,控制着存在于质膜中的离子通道和其他信号效应器的活性。本综述总结了基质相互作用分子的分子生理学和病理生理学的最新信息。我们预计,我们综述中呈现的工作将为参与细胞器间信号转导、细胞功能和人类疾病发病机制的分子相互作用提供新的见解。