Suppr超能文献

利用基于人工神经网络(ANN)的电子鼻系统和气相色谱/质谱联用(GC/MS)测定可可豆的烘焙程度。

Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

机构信息

Department of Food Science and Technology, University of Georgia, Athens, GA, USA.

出版信息

J Sci Food Agric. 2018 Aug;98(10):3851-3859. doi: 10.1002/jsfa.8901. Epub 2018 Mar 12.

Abstract

BACKGROUND

Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN.

RESULTS

Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%.

CONCLUSION

The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry.

摘要

背景

烘焙是巧克力加工的关键步骤,在此过程中会降低水分含量,并形成独特的风味和质地。可可豆烘焙程度的确定对于确保巧克力的质量非常重要。烘焙程度的确定依赖于人类专家或复杂的化学分析,但这对于小制造商和农民来说是无法实现的。在这项研究中,构建了一个由气体传感器阵列组成的电子鼻系统,并用于检测在 0、20、30 和 40 分钟下烘焙的可可豆散发的挥发物。几个信号被用来训练一个三层人工神经网络(ANN)。顶空样品也通过气相色谱/质谱(GC/MS)进行分析,使用 23 种选定的挥发性物质来训练另一个独立的 ANN。

结果

两个 ANN 都被用于预测可可豆的烘焙程度。电子鼻使用 TGS 813、826、822、830、830、2620、2602 和 2610 传感器的信号进行预测,准确率为 94.4%。相比之下,GC/MS 的预测准确率为 95.8%。

结论

电子鼻系统能够预测烘焙程度,其预测能力与使用 GC/MS 的更复杂方法相当。 © 2018 化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验