Suppr超能文献

光声断层成像中的方向和高阶重建框架。

A framework for directional and higher-order reconstruction in photoacoustic tomography.

机构信息

Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, Netherlands. Department of Applied Mathematics, University of Twente, 7500 AE Enschede, Netherlands.

出版信息

Phys Med Biol. 2018 Feb 16;63(4):045018. doi: 10.1088/1361-6560/aaaa4a.

Abstract

Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered back-projection, time reversal and least squares suffer from curved line artefacts and blurring, especially in the case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge of the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography, which enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator-dependent preconditioning strategy. A variety of reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.

摘要

光声断层摄影术是一种混合成像技术,它结合了高光学组织对比度和高超声分辨率。直接重建方法,如滤波反投影、时间反转和最小二乘法,会受到曲线线伪影和模糊的影响,特别是在角度有限或噪声较强的情况下。近年来,正则化迭代方法受到了极大的关注。这些方法利用图像的先验知识来提供更高质量的重建。然而,由于许多断层摄影术的实现严重依赖于所选的特定正则化方法,因此很难以不同的正则化方法及其性质进行简单的比较。为了克服这一瓶颈,我们提出了一种光声断层摄影术的模块化重建框架,它可以方便地比较具有不同性质的正则化方法,例如非线性、高阶或方向。我们使用高效的一阶原对偶算法来解决基础的最小化问题。通过选择与算子相关的预处理策略来优化收敛速度。各种重建方法在具有挑战性的 2D 合成和实验数据集上进行了测试。它们在强噪声水平和有限角度测量下优于直接重建方法,在采集时间和质量方面提供了直接的优势。这项工作为光声断层摄影术中未来先进正则化方法的研究提供了一个基本平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验