Tsinghua University, Department of Electronic Engineering, Haidian, Beijing, China.
Tsinghua University, Department of Automation, Haidian, Beijing, China.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.040901.
Photoacoustic (PA) imaging can provide structural, functional, and molecular information for preclinical and clinical studies. For PA imaging (PAI), non-ideal signal detection deteriorates image quality, and quantitative PAI (QPAI) remains challenging due to the unknown light fluence spectra in deep tissue. In recent years, deep learning (DL) has shown outstanding performance when implemented in PAI, with applications in image reconstruction, quantification, and understanding.
We provide (i) a comprehensive overview of the DL techniques that have been applied in PAI, (ii) references for designing DL models for various PAI tasks, and (iii) a summary of the future challenges and opportunities.
Papers published before November 2020 in the area of applying DL in PAI were reviewed. We categorized them into three types: image understanding, reconstruction of the initial pressure distribution, and QPAI.
When applied in PAI, DL can effectively process images, improve reconstruction quality, fuse information, and assist quantitative analysis.
DL has become a powerful tool in PAI. With the development of DL theory and technology, it will continue to boost the performance and facilitate the clinical translation of PAI.
光声(PA)成像是一种临床前和临床研究的结构、功能和分子信息提供方法。对于 PA 成像(PAI),非理想的信号检测会降低图像质量,由于深层组织中未知的光通量谱,定量 PAI(QPAI)仍然具有挑战性。近年来,深度学习(DL)在 PAI 中的应用表现出了出色的性能,在图像重建、量化和理解方面都有应用。
我们提供了(i)应用于 PAI 的 DL 技术的全面概述,(ii)用于为各种 PAI 任务设计 DL 模型的参考文献,以及(iii)总结未来的挑战和机遇。
回顾了 2020 年 11 月前在应用 DL 于 PAI 领域发表的论文。我们将它们分为三类:图像理解、初始压力分布重建和 QPAI。
当应用于 PAI 时,DL 可以有效地处理图像、提高重建质量、融合信息和辅助定量分析。
DL 已成为 PAI 中的强大工具。随着 DL 理论和技术的发展,它将继续提高 PAI 的性能并促进其临床转化。