Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico.
Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico.
Biochimie. 2018 Apr;147:89-97. doi: 10.1016/j.biochi.2018.01.002. Epub 2018 Feb 2.
For many years, glycine betaine (GB) has been widely studied as an osmolyte in plants and bacteria. In animal cells, GB is an osmolyte mainly in the kidneys, but in humans many studies have shown its role as a methyl donor in homocysteine metabolism in the liver. GB is also a protein stabilizer, and thus, it became known as an osmoprotector. In many organisms GB is synthesized from choline and can also be obtained from some foods. Over the last twenty years GB has gone from being considered simply as an osmolyte to being known as a cytoprotector involved in cell metabolism and as a chemical chaperone. The aim of this review was to gather information about the role of GB in the metabolism of ethanol, lipids, carbohydrates and proteins in animals. The information generated thus far shows that GB regulates enzymes involved in the homocysteine/methionine cycle, sucrose, glucose, fructose and glycogen metabolism, in oxidative and ER-stress caused by ethanol abuse, likewise enzymes involved in lipogenesis and fatty oxidation. Besides, there are data supporting that GB regulates the transcription factors PPARα, NF-κB, FOX1, ChREBP and SREBP1 and this lets GB play a role in protein synthesis. One of the main mechanisms by which GB regulates the enzymes is by changes in their activity either because GB increases their expression or because it regulates changes in their phosphorylation status through specific kinases. GB modulates the expression of genes by changing the degree of methylation in the promoter of target genes. The exact mechanism by which GB modifies the methylation status of the promoter is not yet clear, but methyl transferases that use SAM as methyl donor and DNA methyl transferases are good candidates for this function.
多年来,甘氨酸甜菜碱(GB)一直被广泛研究为植物和细菌中的渗透物。在动物细胞中,GB 主要是肾脏中的渗透物,但在人类中,许多研究表明其在肝脏中同型半胱氨酸代谢中作为甲基供体的作用。GB 也是一种蛋白质稳定剂,因此,它被称为渗透物保护剂。在许多生物体中,GB 是由胆碱合成的,也可以从一些食物中获得。在过去的二十年中,GB 已经从被简单地认为是一种渗透物转变为一种参与细胞代谢的细胞保护剂,以及一种化学伴侣。本综述的目的是收集关于 GB 在动物乙醇、脂质、碳水化合物和蛋白质代谢中的作用的信息。迄今为止获得的信息表明,GB 调节参与同型半胱氨酸/蛋氨酸循环、蔗糖、葡萄糖、果糖和糖原代谢的酶,调节乙醇滥用引起的氧化应激和内质网应激,同样也调节参与脂肪生成和脂肪酸氧化的酶。此外,有数据支持 GB 调节转录因子 PPARα、NF-κB、FOX1、ChREBP 和 SREBP1,这使得 GB 在蛋白质合成中发挥作用。GB 调节酶的主要机制之一是通过改变其活性,因为 GB 可以增加其表达,也可以通过特定的激酶调节其磷酸化状态的变化。GB 通过改变靶基因启动子的甲基化程度来调节基因的表达。GB 改变启动子甲基化状态的确切机制尚不清楚,但使用 SAM 作为甲基供体的甲基转移酶和 DNA 甲基转移酶是该功能的良好候选者。