Suppr超能文献

预测吉西他滨治疗晚期胰腺癌患者的肿瘤生长及其对生存的影响。

Predicting tumour growth and its impact on survival in gemcitabine-treated patients with advanced pancreatic cancer.

机构信息

Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain.

Global Pharmacokinetic/Pharmacodynamics and Pharmacometrics, Eli Lilly and Company Windlesham, Surrey, United Kingdom.

出版信息

Eur J Pharm Sci. 2018 Mar 30;115:296-303. doi: 10.1016/j.ejps.2018.01.033. Epub 2018 Jan 31.

Abstract

The aim of this evaluation was to characterize the impact of the tumour size (TS) effects driven by the anticancer drug gemcitabine on overall survival (OS) in patients with advanced pancreatic cancer by building and validating a predictive semi-mechanistic joint TS-OS model. TS and OS data were obtained from one phase II and one phase III study where gemcitabine was administered (1000-1250 mg/kg over 30-60 min i.v infusion) as single agent to patients (n = 285) with advanced pancreatic cancer. Drug exposure, TS and OS were linked using the population approach with NONMEM 7.3. Pancreatic tumour progression was characterized by exponential growth (doubling time = 67 weeks), and tumour response to treatment was described as a function of the weekly area under the gemcitabine triphosphate concentration vs time curve (AUC), including treatment-related resistance development. The typical predicted percentage of tumour growth inhibition with respect to no treatment was 22.3% at the end of 6 chemotherapy cycles. Emerging resistance elicited a 57% decrease in drug effects during the 6th chemotherapy cycle. Predicted TS profile was identified as main prognostic factor of OS, with tumours responders' profiles improving median OS by 30 weeks compared to stable-disease TS profiles. Results of NCT00574275 trial were predicted using this modelling framework, thereby validating the approach as a prediction tool in clinical development. Our analyses show that despite the advanced stage of the disease in this patient population, the modelling framework herein can be used to predict the likelihood of treatment success using early clinical data.

摘要

本评估旨在构建和验证一个预测性的半机械性联合肿瘤大小(TS)-总生存(OS)模型,以描述抗癌药物吉西他滨对晚期胰腺癌患者 OS 的影响。从一项 II 期和一项 III 期研究中获得了 TS 和 OS 数据,这些研究中吉西他滨作为单一药物(静脉输注 30-60 分钟,剂量为 1000-1250mg/kg)用于晚期胰腺癌患者(n=285)。采用 NONMEM 7.3 人群分析法将药物暴露、TS 和 OS 联系起来。采用指数增长(倍增时间=67 周)来描述胰腺肿瘤的进展,用每周吉西他滨三磷酸浓度-时间曲线下面积(AUC)与时间的比值(AUC)来描述肿瘤对治疗的反应,包括治疗相关耐药的发展。在 6 个化疗周期结束时,未治疗的典型预测肿瘤生长抑制百分比为 22.3%。第 6 个化疗周期中,耐药的出现导致药物作用降低 57%。预测的 TS 谱被确定为 OS 的主要预后因素,与疾病稳定型 TS 谱相比,反应型肿瘤的 TS 谱使中位 OS 提高了 30 周。使用该建模框架预测了 NCT00574275 试验的结果,从而验证了该方法作为临床开发中的预测工具的有效性。我们的分析表明,尽管该患者人群处于疾病晚期,但本文中的建模框架可用于使用早期临床数据预测治疗成功的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验