Suppr超能文献

晚期胰腺导管腺癌患者生存情况的纵向和事件发生时间建模

Longitudinal and time-to-event modeling for the survival of advanced pancreatic ductal adenocarcinoma patients.

作者信息

Yao Qing-Yu, Luo Ping-Yao, Xu Ling-Xiao, Chen Rong, Xue Jun-Sheng, Yong Ling, Shen Lin, Zhou Jun, Zhou Tian-Yan

机构信息

Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China.

出版信息

Acta Pharmacol Sin. 2025 Mar;46(3):751-758. doi: 10.1038/s41401-024-01403-8. Epub 2024 Oct 21.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers especially at advanced stage. In order to analyze the dynamics of potential prognostic biomarkers and further quantify their relationships with the overall survival (OS) of advanced PDAC patients, we herein developed a parametric time-to-event (TTE) model integrated with longitudinal submodels. Data from 104 patients receiving standard chemotherapies were retrospectively collected for model development, and other 54 patients were enrolled as external validation. The longitudinal submodels were developed with the time-course data of sum of longest diameters (SLD) of tumors, serum albumin (ALB) and body weight (BW) using nonlinear mixed effect models. The model-derived metrics including model parameters and individual predictions at different time points were further analyzed in the TTE model, together with other baseline information of patients. A linear growth-exponential shrinkage model was employed to describe the dynamics of SLD, while logistic models were used to fit the relationship of time prior to death with ALB and BW. The TTE model estimated the ALB and BW changes at the 9th week after chemotherapies as well as the baseline CA19-9 level that showed most significant impact on the OS, and the model-based simulations could provide individual survival rate predictions for patients with different prognostic factors. This study quantitatively demonstrates the importance of physical status and baseline disease for the OS of advanced PDAC patients, and highlights that timely nutrition support would be helpful to improve the prognosis.

摘要

胰腺导管腺癌(PDAC)是最致命的癌症之一,尤其是在晚期。为了分析潜在预后生物标志物的动态变化,并进一步量化它们与晚期PDAC患者总生存期(OS)的关系,我们在此开发了一种与纵向子模型相结合的参数化事件发生时间(TTE)模型。回顾性收集了104例接受标准化化疗患者的数据用于模型开发,并纳入另外54例患者作为外部验证。使用非线性混合效应模型,根据肿瘤最长直径总和(SLD)、血清白蛋白(ALB)和体重(BW)的时间进程数据建立纵向子模型。在TTE模型中,进一步分析了包括模型参数和不同时间点个体预测在内的模型衍生指标,以及患者的其他基线信息。采用线性生长-指数收缩模型来描述SLD的动态变化,而逻辑模型则用于拟合死亡前时间与ALB和BW的关系。TTE模型估计了化疗后第9周时ALB和BW的变化,以及对OS影响最显著的基线CA19-9水平,基于模型的模拟可为具有不同预后因素的患者提供个体生存率预测。本研究定量证明了身体状况和基线疾病对晚期PDAC患者OS的重要性,并强调及时的营养支持有助于改善预后。

相似文献

本文引用的文献

1
Covariate modeling in pharmacometrics: General points for consideration.药物代谢动力学中的协变量建模:一般注意事项。
CPT Pharmacometrics Syst Pharmacol. 2024 May;13(5):710-728. doi: 10.1002/psp4.13115. Epub 2024 Apr 2.
3
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验