Suppr超能文献

具有向列型疏水核和无定形 PEG 亲水壳的纳米球:结构变化及其对药物传递的影响。

Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery.

机构信息

New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Soft Matter. 2018 Feb 21;14(8):1327-1335. doi: 10.1039/c7sm02472j.

Abstract

The structure of nanospheres with a crystalline core and an amorphous diffuse shell was investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC). Nanospheres, 28 to 35 nm in diameter, were prepared from a triblock copolymer with poly(ethylene glycol) (PEG) hydrophilic end-blocks and oligomers of alternating desaminotyrosyl-tyrosine octyl ester (DTO) and suberic acid (SA) as the central hydrophobic block. In the lyophilized nanospheres, the diffraction patterns show that the PEG shell is ∼10 nm in thickness and crystalline, and the hydrophobic core is ∼10 nm in diameter with a smectic liquid crystalline texture. In aqueous dispersions, the hydrated PEG forms an amorphous shell, but the crystalline phase in the core persists at concentrations down to 1 mg ml as evidenced by the sharp MAXS diffraction peak at a d-spacing of 24.4 Å and a melting endotherm at 40 °C. As the dispersion is diluted (<1 mg ml), the core becomes less ordered, and its diameter decreases by 50% even though the overall size of the nanosphere remains essentially unchanged. It is likely that below a critical concentration, intermixing of hydrophobic segments with the PEG segments reduces the size and the crystallinity of the core. At these concentrations, the PEG corona forms a eutectic with water. The mechanisms by which the concentration of the dispersion influences the structure of the nanospheres, and consequently their drug-release characteristics, are discussed.

摘要

采用小角中子散射(SANS)、小角/中角/广角 X 射线散射(SAXS/MAXS/WAXS)和差示扫描量热法(DSC)研究了具有结晶核和无定形弥散壳的纳米球的结构。纳米球的直径为 28 至 35nm,由具有聚乙二醇(PEG)亲水性端基和交替的去氨酪氨酸-酪氨酸辛酯(DTO)和琥珀酸(SA)低聚物的嵌段共聚物制备。在冻干的纳米球中,衍射图谱表明 PEG 壳层约 10nm 厚且结晶,疏水性核约 10nm 直径,具有近晶液晶织构。在水基分散体中,水合的 PEG 形成无定形壳,但在浓度低至 1mg/ml 时,核心的结晶相仍然存在,这可以从 24.4Å 的 d 间距的尖锐 MAXS 衍射峰和 40°C 的熔融吸热峰得到证明。随着分散体的稀释(<1mg/ml),核心变得不那么有序,其直径减小了 50%,尽管纳米球的整体尺寸基本保持不变。很可能在临界浓度以下,疏水性链段与 PEG 链段的混合降低了核心的尺寸和结晶度。在这些浓度下,PEG 冠层与水形成共晶。讨论了分散体浓度如何影响纳米球的结构,进而影响其药物释放特性的机制。

相似文献

2
Disassembly of Nanospheres with a PEG Shell upon Adsorption onto PEGylated Substrates.
Langmuir. 2020 Jan 14;36(1):232-241. doi: 10.1021/acs.langmuir.9b03042. Epub 2019 Dec 26.
4
Functionalized nanospheres for targeted delivery of paclitaxel.
J Control Release. 2013 Nov 10;171(3):315-21. doi: 10.1016/j.jconrel.2013.06.017. Epub 2013 Jun 20.
6
Core-shell structure of degradable, thermosensitive polymeric micelles studied by small-angle neutron scattering.
J Phys Chem B. 2008 Jan 24;112(3):784-92. doi: 10.1021/jp073673d. Epub 2008 Jan 1.
7
10
Rational design of block copolymer micelles to control burst drug release at a nanoscale dimension.
Acta Biomater. 2015 Sep;24:127-39. doi: 10.1016/j.actbio.2015.06.017. Epub 2015 Jun 17.

引用本文的文献

1
Machine Learning in Polymer Research.
Adv Mater. 2025 Mar;37(11):e2413695. doi: 10.1002/adma.202413695. Epub 2025 Feb 9.
4
PET-RAFT and SAXS: High Throughput Tools to Study Compactness and Flexibility of Single-Chain Polymer Nanoparticles.
Macromolecules. 2019 Nov 12;52(21):8295-8304. doi: 10.1021/acs.macromol.9b01923. Epub 2019 Oct 25.

本文引用的文献

3
Nanofluids mediating surface forces.
Adv Colloid Interface Sci. 2012 Nov 1;179-182:68-84. doi: 10.1016/j.cis.2012.06.007. Epub 2012 Jun 30.
4
Polymer micelles with crystalline cores for thermally triggered release.
Langmuir. 2012 Jul 24;28(29):10653-60. doi: 10.1021/la300895c. Epub 2012 Jul 11.
5
The Structure of Hydrated Poly (D, L - Lactic Acid) Studied With X-Ray Diffraction and Molecular Simulation Methods.
Macromolecules. 2012 Jun 12;45(11):4896-4906. doi: 10.1021/ma3004778. Epub 2012 May 22.
7
Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization.
Nanotechnology. 2010 May 28;21(21):215103. doi: 10.1088/0957-4484/21/21/215103. Epub 2010 Apr 30.
8
Biodegradable polymeric nanoparticles based drug delivery systems.
Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001. Epub 2009 Sep 8.
9
Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers.
J Control Release. 2008 Sep 10;130(2):98-106. doi: 10.1016/j.jconrel.2008.04.013. Epub 2008 Apr 24.
10
Tyrosine-derived nanospheres for enhanced topical skin penetration.
Int J Pharm. 2008 Feb 28;350(1-2):312-9. doi: 10.1016/j.ijpharm.2007.08.022. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验