Suppr超能文献

植物种类和浅层土壤湿度是克鲁格国家公园稀树草原气孔导度的主要驱动因素。

Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park.

作者信息

Tobin Rebecca L, Kulmatiski Andrew

机构信息

Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, United States of America.

出版信息

PLoS One. 2018 Jan 26;13(1):e0191396. doi: 10.1371/journal.pone.0191396. eCollection 2018.

Abstract

Our goal was to describe stomatal conductance (gs) and the site-scale environmental parameters that best predict gs in Kruger National Park (KNP), South Africa. Dominant grass and woody species were measured over two growing seasons in each of four study sites that represented the natural factorial combination of mean annual precipitation [wet (750 mm) or dry (450 mm)] and soil type (clay or sand) found in KNP. A machine-learning (random forest) model was used to describe gs as a function of plant type (species or functional group) and site-level environmental parameters (CO2, season, shortwave radiation, soil type, soil moisture, time of day, vapor pressure deficit and wind speed). The model explained 58% of the variance among 6,850 gs measurements. Species, or plant functional group, and shallow (0-20 cm) soil moisture had the greatest effect on gs. Atmospheric drivers and soil type were less important. When parameterized with three years of observed environmental data, the model estimated mean daytime growing season gs as 68 and 157 mmol m-2 sec-1 for grasses and woody plants, respectively. The model produced here could, for example, be used to estimate gs and evapotranspiration in KNP under varying climate conditions. Results from this field-based study highlight the role of species identity and shallow soil moisture as primary drivers of gs in savanna ecosystems of KNP.

摘要

我们的目标是描述气孔导度(gs)以及能最佳预测南非克鲁格国家公园(KNP)气孔导度的场地尺度环境参数。在四个研究场地中的每一个场地,于两个生长季节内对优势草本和木本物种进行了测量,这些场地代表了KNP中平均年降水量[湿润(750毫米)或干燥(450毫米)]与土壤类型(黏土或沙土)的自然因子组合。使用机器学习(随机森林)模型将气孔导度描述为植物类型(物种或功能组)和场地水平环境参数(二氧化碳、季节、短波辐射、土壤类型、土壤湿度、一天中的时间、水汽压差和风速)的函数。该模型解释了6850次气孔导度测量值中58%的方差。物种或植物功能组以及浅层(0 - 20厘米)土壤湿度对气孔导度的影响最大。大气驱动因素和土壤类型的重要性较低。当用三年的观测环境数据进行参数化时,该模型估计草本植物和木本植物在白天生长季节的平均气孔导度分别为68和157毫摩尔·平方米⁻²·秒⁻¹。例如,这里生成的模型可用于估计不同气候条件下KNP的气孔导度和蒸散量。这项基于实地研究的结果突出了物种特性和浅层土壤湿度在KNP稀树草原生态系统中作为气孔导度主要驱动因素的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ab/5786297/f1d72b723d65/pone.0191396.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验