Suppr超能文献

在基因组选择前后,北美荷斯坦牛的近交和纯合子连续。

Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle.

机构信息

Department of Animal Science, College of Agriculture, Isfahan University of Technology, Khomeyni Shahr, Iran.

Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Canada.

出版信息

BMC Genomics. 2018 Jan 27;19(1):98. doi: 10.1186/s12864-018-4453-z.

Abstract

BACKGROUND

While autozygosity as a consequence of selection is well understood, there is limited information on the ability of different methods to measure true inbreeding. In the present study, a gene dropping simulation was performed and inbreeding estimates based on runs of homozygosity (ROH), pedigree, and the genomic relationship matrix were compared to true inbreeding. Inbreeding based on ROH was estimated using SNP1101, PLINK, and BCFtools software with different threshold parameters. The effects of different selection methods on ROH patterns were also compared. Furthermore, inbreeding coefficients were estimated in a sample of genotyped North American Holstein animals born from 1990 to 2016 using 50 k chip data and ROH patterns were assessed before and after genomic selection.

RESULTS

Using ROH with a minimum window size of 20 to 50 using SNP1101 provided the closest estimates to true inbreeding in simulation study. Pedigree inbreeding tended to underestimate true inbreeding, and results for genomic inbreeding varied depending on assumptions about base allele frequencies. Using an ROH approach also made it possible to assess the effect of population structure and selection on distribution of runs of autozygosity across the genome. In the simulation, the longest individual ROH and the largest average length of ROH were observed when selection was based on best linear unbiased prediction (BLUP), whereas genomic selection showed the largest number of small ROH compared to BLUP estimated breeding values (BLUP-EBV). In North American Holsteins, the average number of ROH segments of 1 Mb or more per individual increased from 57 in 1990 to 82 in 2016. The rate of increase in the last 5 years was almost double that of previous 5 year periods. Genomic selection results in less autozygosity per generation, but more per year given the reduced generation interval.

CONCLUSIONS

This study shows that existing software based on the measurement of ROH can accurately identify autozygosity across the genome, provided appropriate threshold parameters are used. Our results show how different selection strategies affect the distribution of ROH, and how the distribution of ROH has changed in the North American dairy cattle population over the last 25 years.

摘要

背景

虽然由于选择导致的同系繁殖已经得到很好的理解,但对于不同方法测量真实近亲繁殖的能力的信息有限。在本研究中,进行了基因丢失模拟,并比较了基于纯合子运行(ROH)、系谱和基因组关系矩阵的近亲繁殖估计值与真实近亲繁殖。使用 SNP1101、PLINK 和 BCFtools 软件基于不同的阈值参数计算基于 ROH 的近交系数。还比较了不同选择方法对 ROH 模式的影响。此外,使用 50k 芯片数据对 1990 年至 2016 年出生的北美荷斯坦基因型动物样本进行了近交系数估计,并在基因组选择前后评估了 ROH 模式。

结果

在模拟研究中,使用 SNP1101 以 20 到 50 个最小窗口大小计算 ROH 提供了最接近真实近亲繁殖的估计值。系谱近交系数往往低估了真实近交系数,而基于基因组的近交系数取决于基础等位基因频率的假设。使用 ROH 方法还可以评估群体结构和选择对基因组上同系繁殖运行分布的影响。在模拟中,当基于最佳线性无偏预测(BLUP)进行选择时,观察到最长的个体 ROH 和最大的平均 ROH 长度,而与 BLUP 估计育种值(BLUP-EBV)相比,基因组选择显示了大量较小的 ROH。在北美荷斯坦牛中,每个个体 1Mb 或更长的 ROH 片段的平均数量从 1990 年的 57 个增加到 2016 年的 82 个。过去 5 年的增长率几乎是前 5 年的两倍。基因组选择导致每代的同系繁殖减少,但由于世代间隔缩短,每年的同系繁殖增加。

结论

本研究表明,基于 ROH 测量的现有软件可以准确识别整个基因组中的同系繁殖,只要使用适当的阈值参数。我们的结果表明了不同的选择策略如何影响 ROH 的分布,以及在过去 25 年中北美奶牛群体的 ROH 分布如何变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf4/5787230/5d1aecf3de2e/12864_2018_4453_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验