Suppr超能文献

使用单步基因组最佳线性无偏预测提高西班牙纯种马繁殖性状评估的可靠性

Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction.

作者信息

Ziadi Chiraz, Valera Mercedes, Laseca Nora, Perdomo-González Davinia, Demyda-Peyrás Sebastián, de Los Terreros Arancha Rodríguez-Sainz, Molina Antonio

机构信息

Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain.

Departamento de Agronomía, Universidad de Sevilla, 41013 Sevilla, Spain.

出版信息

Genes (Basel). 2025 May 9;16(5):562. doi: 10.3390/genes16050562.

Abstract

By simultaneously integrating both genotyped and non-genotyped animals into genetic evaluation, the single-step genomic BLUP method enhanced the accuracy of genetic assessments. This study aimed to compare the increase in prediction reliability (R) between restricted maximum likelihood (REML) and single-step genomic REML (ssGREML) in the Pura Raza Española (PRE) horse breed. The dataset comprised reproductive records for seven fertility traits from 47,502 females, with a total of 57,316 animals represented in the pedigree. A total of 4009 animals were genotyped using the EQUIGENE 90K SNP array, and 71,322 SNPs were retained for analysis after quality control. Genetic parameters were estimated using a multivariate model with the BLUPF90+ v2.60 software. Heritability estimates were similar between REML and ssGREML, ranging from 0.07 for IF12 to 0.349 for ALF. An increase in R was observed with ssGREML compared to REML across all traits, with overall gains ranging from 2.20% to 3.71%. Among genotyped animals, R values ranged from 17.81% to 24.04%, while significantly lower values (0.80% to 2.34%) were observed in non-genotyped animals. Notably, individuals with low initial R values under the REML approach exhibited the most significant gains using ssGREML. This improvement was particularly pronounced among stallions with fewer than 40 controlled foals. Our results demonstrated that incorporating genomic data improves the reliability of genetic evaluations for mare fertility in PRE horses.

摘要

通过将基因分型和非基因分型动物同时纳入遗传评估,单步基因组最佳线性无偏预测(BLUP)方法提高了遗传评估的准确性。本研究旨在比较纯西班牙马(PRE)品种中限制最大似然法(REML)和单步基因组REML(ssGREML)在预测可靠性(R)方面的提升。数据集包括47502头母马七个繁殖性状的繁殖记录,系谱中共涵盖57316头动物。使用EQUIGENE 90K SNP芯片对4009头动物进行了基因分型,经过质量控制后保留了71322个单核苷酸多态性(SNP)用于分析。使用BLUPF90 + v2.60软件的多变量模型估计遗传参数。REML和ssGREML之间的遗传力估计值相似,范围从IF12的0.07到ALF的0.349。与REML相比,所有性状的ssGREML均观察到R值增加,总体增幅为2.20%至3.71%。在基因分型动物中,R值范围为17.81%至24.04%,而非基因分型动物的值明显较低(0.80%至2.34%)。值得注意的是,在REML方法下初始R值较低的个体使用ssGREML时增益最为显著。这种改善在控制的驹数少于40匹的种马中尤为明显。我们的结果表明,纳入基因组数据可提高PRE马母马繁殖力遗传评估的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验