Suppr超能文献

细菌视紫红质和嗜盐菌视紫红质中的发色团/蛋白质相互作用。

Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin.

作者信息

Spudich J L, McCain D A, Nakanishi K, Okabe M, Shimizu N, Rodman H, Honig B, Bogomolni R A

出版信息

Biophys J. 1986 Feb;49(2):479-83. doi: 10.1016/S0006-3495(86)83657-8.

Abstract

Retinal analogues with altered conjugated double bond systems or altered stereochemistry were incorporated into the phototaxis receptor sensory rhodopsin (SR) and the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium halobium. Wavelength shifts in absorption ("opsin shifts") due to analogue interaction with the protein microenvironment demonstrate that the same overall electrostatic and steric properties of the retinal binding-site structures exist in both proteins despite their different functions. pi-Electron calculations from the opsin shifts lead to a new description of protein charge distribution that applies to the binding sites of both SR and BR. The new data extends the previously proposed external point charge model for BR to include an ion-pair protein/chromophore interaction near the beta-ionone moiety. The new data modifies the previously proposed external point-charge model, the derivation of which involved an experimentally erroneous opsin shift for one of the BR analogues.

摘要

将具有改变的共轭双键系统或改变的立体化学的视网膜类似物掺入来自嗜盐嗜盐菌的趋光性受体感官视紫红质(SR)和光驱动质子泵细菌视紫红质(BR)中。由于类似物与蛋白质微环境的相互作用而导致的吸收波长变化(“视蛋白位移”)表明,尽管这两种蛋白质功能不同,但它们的视网膜结合位点结构具有相同的整体静电和空间性质。根据视蛋白位移进行的π电子计算得出了一种适用于SR和BR结合位点的蛋白质电荷分布新描述。新数据扩展了先前提出的BR外部点电荷模型,以包括在β-紫罗兰酮部分附近的离子对蛋白质/发色团相互作用。新数据修改了先前提出的外部点电荷模型,该模型的推导涉及BR类似物之一的实验错误视蛋白位移。

相似文献

1
Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin.
Biophys J. 1986 Feb;49(2):479-83. doi: 10.1016/S0006-3495(86)83657-8.
2
Effects of modifications of the retinal beta-ionone ring on archaebacterial sensory rhodopsin I.
Biophys J. 1990 Mar;57(3):477-83. doi: 10.1016/S0006-3495(90)82564-9.
3
Halorhodopsin and sensory rhodopsin contain a C6-C7 s-trans retinal chromophore.
Biophys J. 1989 Jan;55(1):193-6. doi: 10.1016/S0006-3495(89)82791-2.
4
Chromophore/protein and chromophore/anion interactions in halorhodopsin.
Biophys J. 1988 Feb;53(2):185-91. doi: 10.1016/S0006-3495(88)83080-7.
5
Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogues as inhibitors.
Eur J Biochem. 1981 Jul;117(2):353-9. doi: 10.1111/j.1432-1033.1981.tb06345.x.
7
Interaction of aromatic retinal analogues with apopurple membranes of Halobacterium halobium.
Biochemistry. 1984 May 22;23(11):2507-13. doi: 10.1021/bi00306a029.
10
Mechanism of activation of sensory rhodopsin I: evidence for a steric trigger.
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9412-6. doi: 10.1073/pnas.88.21.9412.

引用本文的文献

1
NeoR, a near-infrared absorbing rhodopsin.
Nat Commun. 2020 Nov 10;11(1):5682. doi: 10.1038/s41467-020-19375-8.
2
Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3.
Photochem Photobiol. 2019 Jul;95(4):959-968. doi: 10.1111/php.13093. Epub 2019 Apr 8.
3
Directed evolution of bacteriorhodopsin for applications in bioelectronics.
J R Soc Interface. 2013 May 15;10(84):20130197. doi: 10.1098/rsif.2013.0197. Print 2013 Jul 6.
4
Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal.
Biochemistry. 2012 Jun 5;51(22):4499-506. doi: 10.1021/bi2018859. Epub 2012 May 22.
6
All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin.
Biophys J. 1991 Dec;60(6):1477-89. doi: 10.1016/S0006-3495(91)82183-X.
8
Evidence for a 13,14-cis cycle in bacteriorhodopsin.
Biophys J. 1986 Jul;50(1):81-9. doi: 10.1016/S0006-3495(86)83441-5.
9
Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction.
Biochemistry. 2008 Nov 4;47(44):11490-8. doi: 10.1021/bi800945t. Epub 2008 Oct 9.
10
Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149-53. doi: 10.1073/pnas.88.1.149.

本文引用的文献

1
Photophysics of light transduction in rhodopsin and bacteriorhodopsin.
Annu Rev Biophys Bioeng. 1981;10:315-54. doi: 10.1146/annurev.bb.10.060181.001531.
2
Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium.
Proc Natl Acad Sci U S A. 1982 Oct;79(20):6250-4. doi: 10.1073/pnas.79.20.6250.
4
Spectroscopic discrimination of the three rhodopsinlike pigments in Halobacterium halobium membranes.
Biophys J. 1983 Aug;43(2):243-6. doi: 10.1016/S0006-3495(83)84345-8.
5
Mechanism of colour discrimination by a bacterial sensory rhodopsin.
Nature. 1984;312(5994):509-13. doi: 10.1038/312509a0.
6
Bacterial rhodopsins monitored with fluorescent dyes in vesicles and in vivo.
J Membr Biol. 1984;82(1):89-94. doi: 10.1007/BF01870735.
10
On the mechanism of wavelength regulation in visual pigments.
Photochem Photobiol. 1985 Apr;41(4):471-9. doi: 10.1111/j.1751-1097.1985.tb03514.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验