Suppr超能文献

慢性酒精、内在兴奋性和钾通道:神经适应性与饮酒行为

Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior.

作者信息

Cannady Reginald, Rinker Jennifer A, Nimitvilai Sudarat, Woodward John J, Mulholland Patrick J

机构信息

Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Handb Exp Pharmacol. 2018;248:311-343. doi: 10.1007/164_2017_90.

Abstract

Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (K2), voltage-dependent (K7), and G protein-coupled inwardly rectifying (K3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding K2, K7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in K2, K7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of K2 and K7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.

摘要

酒精使用障碍背后的神经机制仍然难以捉摸,这种认知上的不足减缓了有效治疗策略的开发,这些策略旨在降低复发率并延长戒酒时间。虽然慢性酒精暴露所产生的突触适应性已经在多种脑区得到了广泛的描述,但关键投射神经元内在兴奋性的变化却未得到充分研究。越来越多的证据表明,长期饮酒和酒精依赖会导致内在兴奋性的可塑性,这可以通过诱发动作电位发放和超极化后电位幅度的变化来衡量。在本章中,我们描述了长期酒精暴露后跨物种和多个脑区投射神经元细胞放电的功能变化。钙激活(K2)、电压依赖性(K7)和G蛋白偶联内向整流(K3或GIRK)钾通道的适应性变化调节了诱发放电和超极化后电位,这与慢性酒精引起的内在兴奋性的功能变化平行。此外,酒精相关行为与编码K2、K7和GIRK通道的基因之间存在很强的遗传联系,对这些通道进行药理学靶向可以减少酒精消耗和酒精相关行为。总之,这些研究表明,长期饮酒会导致K2、K7和GIRK通道的适应性变化,从而导致超极化后电位调节受损和异常的细胞放电。用K2和K7通道的正性调节剂纠正超极化后电位的缺陷,并改变GIRK通道的结合口袋以阻止酒精进入,代表了一种潜在的高效药理学方法,该方法可以恢复内在兴奋性的变化并减少受影响个体的酒精消耗。

相似文献

2
Effects of monoamines on the intrinsic excitability of lateral orbitofrontal cortex neurons in alcohol-dependent and non-dependent female mice.
Neuropharmacology. 2018 Jul 15;137:1-12. doi: 10.1016/j.neuropharm.2018.04.019. Epub 2018 Apr 22.
3
Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability.
Neuropsychopharmacology. 2017 Aug;42(9):1800-1812. doi: 10.1038/npp.2017.22. Epub 2017 Jan 31.
6
Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells.
J Neurosci. 2018 Jul 18;38(29):6513-6526. doi: 10.1523/JNEUROSCI.0674-18.2018. Epub 2018 Jun 18.
7
Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption.
Addict Biol. 2016 Nov;21(6):1097-1112. doi: 10.1111/adb.12279. Epub 2015 Jun 23.
8
Lithium reduces the span of G protein-activated K (GIRK) channel inhibition in hippocampal neurons.
Bipolar Disord. 2017 Nov;19(7):568-574. doi: 10.1111/bdi.12536. Epub 2017 Sep 12.

引用本文的文献

3
BK channels and alcohol tolerance: Insights from studies on , nematodes, rodents and cell lines: A systematic review.
Med Int (Lond). 2025 Apr 2;5(4):33. doi: 10.3892/mi.2025.232. eCollection 2025 Jul-Aug.
4
Changes in the Properties of Ethanol-Sensitive Molecular Targets During Maturation and Aging.
Adv Exp Med Biol. 2025;1473:299-316. doi: 10.1007/978-3-031-81908-7_13.
5
Adaptations in glutathione-based redox protein signaling pathways and alcohol drinking across species.
Biomed Pharmacother. 2024 Nov;180:117514. doi: 10.1016/j.biopha.2024.117514. Epub 2024 Oct 2.
6
Proactive Versus Reactive Control Strategies Differentially Mediate Alcohol Drinking in Male Wistars and P Rats.
eNeuro. 2024 Mar 27;11(3). doi: 10.1523/ENEURO.0385-23.2024. Print 2024 Mar.
7
Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking.
Transl Psychiatry. 2023 Nov 27;13(1):364. doi: 10.1038/s41398-023-02676-z.
9
Neuronal G protein-gated K channels.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C439-C460. doi: 10.1152/ajpcell.00102.2022. Epub 2022 Jun 15.
10
Alcohol-Induced Neuroinflammatory Response and Mitochondrial Dysfunction on Aging and Alzheimer's Disease.
Front Behav Neurosci. 2022 Feb 10;15:778456. doi: 10.3389/fnbeh.2021.778456. eCollection 2021.

本文引用的文献

3
The lateral habenula and alcohol: Role of glutamate and M-type potassium channels.
Pharmacol Biochem Behav. 2017 Nov;162:94-102. doi: 10.1016/j.pbb.2017.06.005. Epub 2017 Jun 15.
4
Effects of acute alcohol on excitability in the CNS.
Neuropharmacology. 2017 Aug 1;122:36-45. doi: 10.1016/j.neuropharm.2017.04.007. Epub 2017 May 4.
5
Precision medicine and pharmacogenetics: what does oncology have that addiction medicine does not?
Addiction. 2017 Dec;112(12):2086-2094. doi: 10.1111/add.13818. Epub 2017 Apr 21.
6
Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula.
Neuropsychopharmacology. 2017 Aug;42(9):1813-1824. doi: 10.1038/npp.2017.68. Epub 2017 Apr 7.
7
Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models.
Pharmacogenomics. 2017 Apr;18(6):555-570. doi: 10.2217/pgs-2016-0193. Epub 2017 Mar 27.
8
Prefrontal Cortex K2 Channels Regulate mGlu-Dependent Plasticity and Extinction of Alcohol-Seeking Behavior.
J Neurosci. 2017 Apr 19;37(16):4359-4369. doi: 10.1523/JNEUROSCI.2873-16.2017. Epub 2017 Mar 20.
9
Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques.
J Neurosci. 2017 Mar 29;37(13):3646-3660. doi: 10.1523/JNEUROSCI.0133-17.2017. Epub 2017 Mar 7.
10
Prefrontal cortex output circuits guide reward seeking through divergent cue encoding.
Nature. 2017 Mar 2;543(7643):103-107. doi: 10.1038/nature21376. Epub 2017 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验