Departments of Neurobiology and.
Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294.
J Neurosci. 2018 Jul 18;38(29):6513-6526. doi: 10.1523/JNEUROSCI.0674-18.2018. Epub 2018 Jun 18.
Sparse neural activity in the dentate gyrus is enforced by powerful networks of inhibitory GABAergic interneurons in combination with low intrinsic excitability of the principal neurons, the dentate granule cells (GCs). Although the cellular and circuit properties that dictate synaptic inhibition are well studied, less is known about mechanisms that confer low GC intrinsic excitability. Here we demonstrate that intact G protein-mediated signaling contributes to the characteristic low resting membrane potential that differentiates mature dentate GCs from CA1 pyramidal cells and developing adult-born GCs. In mature GCs from male and female mice, intact G protein signaling robustly reduces intrinsic excitability, whereas deletion of G protein-activated inwardly rectifying potassium channel 2 (GIRK2) increases excitability and blocks the effects of G protein signaling on intrinsic properties. Similarly, pharmacological manipulation of GABA receptors (GABARs) or GIRK channels alters intrinsic excitability and GC spiking behavior. However, adult-born new GCs lack functional GIRK activity, with phasic and constitutive GABAR-mediated GIRK signaling appearing after several weeks of maturation. Phasic activation is interneuron specific, arising primarily from nNOS-expressing interneurons rather than parvalbumin- or somatostatin-expressing interneurons. Together, these results demonstrate that G protein signaling contributes to the intrinsic excitability that differentiates mature and developing dentate GCs and further suggest that late maturation of GIRK channel activity is poised to convert early developmental functions of GABA receptor signaling into GABAR-mediated inhibition. The dentate gyrus exhibits sparse neural activity that is essential for the computational function of pattern separation. Sparse activity is ascribed to strong local inhibitory circuits in combination with low intrinsic excitability of the principal neurons, the granule cells. Here we show that constitutive activity of G protein-coupled inwardly rectifying potassium channels (GIRKs) underlies to the hallmark low resting membrane potential and input resistance of mature dentate neurons. Adult-born neurons initially lack functional GIRK channels, with constitutive and phasic GABA receptor-mediated GIRK inhibition developing in tandem after several weeks of maturation. Our results reveal that GABA/GIRK activity is an important determinant of low excitability of mature dentate granule cells that may contribute to sparse DG activity .
齿状回中的稀疏神经活动是由强大的抑制性 GABA 能中间神经元网络与主神经元(齿状回颗粒细胞,GCs)的低固有兴奋性相结合而强制产生的。尽管决定突触抑制的细胞和电路特性已经得到了很好的研究,但对于赋予 GC 低固有兴奋性的机制却知之甚少。在这里,我们证明了完整的 G 蛋白介导的信号转导有助于区分成熟的齿状回 GC 和 CA1 锥体神经元和发育中的成年新生 GC 的特征性低静息膜电位。在雄性和雌性小鼠的成熟 GC 中,完整的 G 蛋白信号显著降低了固有兴奋性,而 G 蛋白激活内向整流钾通道 2(GIRK2)的缺失则增加了兴奋性并阻断了 G 蛋白信号对固有特性的影响。同样,GABA 受体(GABARs)或 GIRK 通道的药理学操纵也改变了固有兴奋性和 GC 放电行为。然而,成年新生的新 GC 缺乏功能性 GIRK 活性,在数周的成熟后才出现阶段性和组成性的 GABA 介导的 GIRK 信号。阶段性激活是中间神经元特异性的,主要来自表达 nNOS 的中间神经元,而不是表达 parvalbumin 或 somatostatin 的中间神经元。总之,这些结果表明,G 蛋白信号转导有助于区分成熟和发育中的齿状回 GC 的固有兴奋性,并且进一步表明 GIRK 通道活性的后期成熟是将 GABA 受体信号的早期发育功能转化为 GABA 介导的抑制的关键。齿状回表现出稀疏的神经活动,这对于模式分离的计算功能至关重要。稀疏的活动归因于强大的局部抑制性电路以及主要神经元(颗粒细胞)的低固有兴奋性。在这里,我们表明 G 蛋白偶联内向整流钾通道(GIRKs)的组成性活性是成熟齿状回神经元标志性的低静息膜电位和输入电阻的基础。成年新生神经元最初缺乏功能性 GIRK 通道,在数周的成熟后,组成性和阶段性 GABA 受体介导的 GIRK 抑制同时发展。我们的研究结果表明,GABA/GIRK 活性是成熟齿状回颗粒细胞低兴奋性的重要决定因素,这可能有助于稀疏 DG 活动。