Suppr超能文献

卵巢肿瘤中选定元素的定量分析及其作为组织分类器的潜力。

Quantification of selected elements in ovarian tumours and their potentials as a tissue classifier.

作者信息

Chmura L, Grzelak M, Czyzycki M, Wrobel P, Brzyszczyk M, Jach R, Adamek D, Lankosz M

机构信息

Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University, Cracow, Poland.

Faculty of Physics and Applied Computer Science, University of Science and Technology, Cracow, Poland.

出版信息

J Physiol Pharmacol. 2017 Oct;68(5):699-707.

Abstract

Neoplastic and healthy ovarian tissues were analysed to identify the changes in the spatial distribution and concentration of elements using synchrotron induced micro X-ray fluorescence spectroscopy. High-resolution distribution maps of minor and trace elements were drawn. Significant amounts of elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb were present in all neoplastic tissues analysed. The study showed significant diversifications in elemental distributions depending on the structure of tissue. The efficacy of micro X-ray fluorescence spectroscopy to distinguish between various types of ovarian tumours based on the concentrations of studied elements was confirmed by multivariate discriminant analysis. Our analysis showed that the most important elements for tissue classification are S, Cl, K, Fe, Zn, Br and Rb.

摘要

利用同步加速器诱导的微X射线荧光光谱法对肿瘤性和健康的卵巢组织进行分析,以确定元素的空间分布和浓度变化。绘制了微量元素和痕量元素的高分辨率分布图。在所有分析的肿瘤组织中都存在大量的元素,如磷、硫、氯、钾、钙、铁、铜、锌、溴和铷。研究表明,根据组织结构,元素分布存在显著差异。多变量判别分析证实了微X射线荧光光谱法基于所研究元素的浓度区分不同类型卵巢肿瘤的有效性。我们的分析表明,对组织分类最重要的元素是硫、氯、钾、铁、锌、溴和铷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验