Feehan Dennis M, Salganik Matthew J
Department of Demography, University of California, Berkeley, CA, USA.
Office of Population Research, Princeton University, Princeton, NJ, USA.
Sociol Methodol. 2016 Aug;46(1):153-186. doi: 10.1177/0081175016665425. Epub 2016 Sep 20.
The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new estimator can be used when data are collected via complex sample designs and from incomplete sampling frames. However, the generalized scale-up estimator also requires data from two samples: one from the frame population and one from the hidden population. In some situations these data from the hidden population can be collected by adding a small number of questions to already planned studies. For other situations, we develop interpretable adjustment factors that can be applied to the basic scale-up estimator. We conclude with practical recommendations for the design and analysis of future studies.
网络放大法使研究人员能够利用抽样的社会网络数据来估计隐藏人群的规模,如药物注射者和性工作者。基本的放大估计器比其他规模估计技术具有优势,但它依赖于有问题的建模假设。我们提出了一种新的广义放大估计器,可用于社会混合非随机且对隐藏人群成员身份认知不完美的情况。此外,当通过复杂样本设计并从不完整抽样框收集数据时,也可使用新估计器。然而,广义放大估计器也需要来自两个样本的数据:一个来自框架人群,另一个来自隐藏人群。在某些情况下,这些来自隐藏人群的数据可以通过在已规划的研究中添加少量问题来收集。对于其他情况,我们开发了可解释的调整因子,可应用于基本放大估计器。我们最后给出了对未来研究设计和分析的实用建议。