Suppr超能文献

推广网络放大法:一种用于隐性人群规模的新估计器。

Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations.

作者信息

Feehan Dennis M, Salganik Matthew J

机构信息

Department of Demography, University of California, Berkeley, CA, USA.

Office of Population Research, Princeton University, Princeton, NJ, USA.

出版信息

Sociol Methodol. 2016 Aug;46(1):153-186. doi: 10.1177/0081175016665425. Epub 2016 Sep 20.

Abstract

The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new estimator can be used when data are collected via complex sample designs and from incomplete sampling frames. However, the generalized scale-up estimator also requires data from two samples: one from the frame population and one from the hidden population. In some situations these data from the hidden population can be collected by adding a small number of questions to already planned studies. For other situations, we develop interpretable adjustment factors that can be applied to the basic scale-up estimator. We conclude with practical recommendations for the design and analysis of future studies.

摘要

网络放大法使研究人员能够利用抽样的社会网络数据来估计隐藏人群的规模,如药物注射者和性工作者。基本的放大估计器比其他规模估计技术具有优势,但它依赖于有问题的建模假设。我们提出了一种新的广义放大估计器,可用于社会混合非随机且对隐藏人群成员身份认知不完美的情况。此外,当通过复杂样本设计并从不完整抽样框收集数据时,也可使用新估计器。然而,广义放大估计器也需要来自两个样本的数据:一个来自框架人群,另一个来自隐藏人群。在某些情况下,这些来自隐藏人群的数据可以通过在已规划的研究中添加少量问题来收集。对于其他情况,我们开发了可解释的调整因子,可应用于基本放大估计器。我们最后给出了对未来研究设计和分析的实用建议。

相似文献

5

引用本文的文献

3
Comparing the Robustness of Simple Network Scale-Up Method Estimators.比较简单网络扩展方法估计器的稳健性。
Sociol Methodol. 2024 Aug;54(2):385-403. doi: 10.1177/00811750241242791. Epub 2024 Apr 14.
6
Thirty Years of The Network Scale-up Method.网络推广方法三十年。
J Am Stat Assoc. 2021;116(535):1548-1559. doi: 10.1080/01621459.2021.1935267. Epub 2021 Jul 21.

本文引用的文献

3
Diagnostics for Respondent-driven Sampling.应答驱动抽样的诊断方法。
J R Stat Soc Ser A Stat Soc. 2015 Jan;178(1):241-269. doi: 10.1111/rssa.12059. Epub 2014 May 1.
5
Network Structure and Biased Variance Estimation in Respondent Driven Sampling.应答驱动抽样中的网络结构与偏差方差估计
PLoS One. 2015 Dec 17;10(12):e0145296. doi: 10.1371/journal.pone.0145296. eCollection 2015.
6
Network Model-Assisted Inference from Respondent-Driven Sampling Data.基于应答者驱动抽样数据的网络模型辅助推断
J R Stat Soc Ser A Stat Soc. 2015 Jun;178(3):619-639. doi: 10.1111/rssa.12091. Epub 2015 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验