Suppr超能文献

动态赫布交叉相关学习解决了尖峰时间依赖性可塑性难题。

Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.

作者信息

Olde Scheper Tjeerd V, Meredith Rhiannon M, Mansvelder Huibert D, van Pelt Jaap, van Ooyen Arjen

机构信息

Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

Department of Computing and Communication Technologies, Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford, United Kingdom.

出版信息

Front Comput Neurosci. 2018 Jan 11;11:119. doi: 10.3389/fncom.2017.00119. eCollection 2017.

Abstract

Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.

摘要

人们发现,尖峰时间依赖性可塑性呈现出多种不同形式。经典的STDP曲线有一个增强窗口和一个抑制窗口,它只是众多描述使用STDP机制进行突触学习的可能曲线之一。实验表明,STDP曲线可能包含多个宽度可变的LTP和LTD窗口,甚至还会出现反转窗口。能够产生如此广泛且明显不兼容的学习曲线范围的潜在STDP机制仍在研究中。本文表明,STDP源于突触处局部活动的两种动态赫布交叉相关性的组合。突触前活动与局部突触后活动的相关性是突触前神经元和突触后神经元活动差异的一个强大且可靠的指标。第二种相关性是局部突触后活动与树突活动之间的相关性,这是局部突触和树突活动匹配的一个良好指标。我们表明,这种简单的与时间无关的学习规则可以产生多种形式的STDP学习曲线。该规则调节突触强度,无需尖峰匹配或其他监督学习机制。突触处树突活动的局部差异极大地影响交叉相关性差异,而交叉相关性差异决定了不同神经活动源的相对贡献。附近突触、动作电位(正向和反向传播)以及抑制性突触引起的树突活动将动态改变突触处的局部活动以及由此产生的STDP学习规则。动态赫布学习规则还确保由此产生的突触强度是动态稳定的,并且突触之间的相互作用不会导致局部不稳定。该规则清楚地表明,突触作为独立的局部计算实体发挥作用,每个实体都对全局活动做出贡献,不是以简单的线性方式,而是以一种适合实现神经元和整个树突结构的局部和全局稳定性的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9f4/5768644/a15883cf211b/fncom-11-00119-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验