Suppr超能文献

探究通过肽键的电荷传输。

Probing Charge Transport through Peptide Bonds.

作者信息

Brisendine Joseph M, Refaely-Abramson Sivan, Liu Zhen-Fei, Cui Jing, Ng Fay, Neaton Jeffrey B, Koder Ronald L, Venkataraman Latha

机构信息

Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, and Department of Biochemistry, City College of New York , New York, New York 10031, United States.

Department of Physics, University of California Berkeley , Berkeley, California 94720, United States.

出版信息

J Phys Chem Lett. 2018 Feb 15;9(4):763-767. doi: 10.1021/acs.jpclett.8b00176. Epub 2018 Feb 1.

Abstract

We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.

摘要

我们使用基于扫描隧道显微镜的断接结方法在单分子水平上测量未修饰肽的电导,利用N端胺基和C端羧基作为与金金属结合的连接体。我们对寡甘氨酸和寡丙氨酸主链的电导测量不依赖于肽侧链连接体。我们将结果与一端为胺基另一端为羧基不对称终止的烷烃进行比较,以表明肽键会降低原本饱和碳链的电导。使用新开发的第一性原理方法,我们将电导降低归因于肽键处的电荷局域化,这相对于费米能级降低了前沿轨道的能量以及与引线的电子耦合,降低了隧穿概率。至关重要的是,与烷烃相比,这表现为肽主链的电导衰减随长度增加而增加。

相似文献

1
Probing Charge Transport through Peptide Bonds.
J Phys Chem Lett. 2018 Feb 15;9(4):763-767. doi: 10.1021/acs.jpclett.8b00176. Epub 2018 Feb 1.
2
Interpretation of stochastic events in single molecule conductance measurements.
Nano Lett. 2006 Oct;6(10):2362-7. doi: 10.1021/nl0609495.
4
Impact of molecular symmetry on single-molecule conductance.
J Am Chem Soc. 2013 Aug 14;135(32):11724-7. doi: 10.1021/ja4055367. Epub 2013 Aug 6.
6
Conductance titration of single-peptide molecules.
J Am Chem Soc. 2004 May 5;126(17):5370-1. doi: 10.1021/ja049469a.
7
Length-dependent conductance of oligothiophenes.
J Am Chem Soc. 2014 Jul 23;136(29):10486-92. doi: 10.1021/ja505277z. Epub 2014 Jul 15.
8
Silane and Germane Molecular Electronics.
Acc Chem Res. 2017 Apr 18;50(4):1088-1095. doi: 10.1021/acs.accounts.7b00059. Epub 2017 Mar 27.
9
In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions.
Nat Nanotechnol. 2011 May 8;6(6):353-7. doi: 10.1038/nnano.2011.66.
10
Electronic transport and mechanical stability of carboxyl linked single-molecule junctions.
Phys Chem Chem Phys. 2012 Oct 28;14(40):13841-5. doi: 10.1039/c2cp41578j. Epub 2012 Jul 31.

引用本文的文献

2
Single-Molecule Conductance of Staffanes.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202415978. doi: 10.1002/anie.202415978. Epub 2024 Nov 6.
3
Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions.
Nat Chem. 2024 Nov;16(11):1772-1780. doi: 10.1038/s41557-024-01619-5. Epub 2024 Aug 26.
4
Low Vapor Pressure Solvents for Single-Molecule Junction Measurements.
Nano Lett. 2024 Aug 14;24(32):9998-10005. doi: 10.1021/acs.nanolett.4c02786. Epub 2024 Aug 2.
5
Secondary structure determines electron transport in peptides.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2403324121. doi: 10.1073/pnas.2403324121. Epub 2024 Jul 25.
6
Coherent spin transport in a copper protein.
J Mol Model. 2024 Jun 18;30(7):218. doi: 10.1007/s00894-024-06025-9.
7
Single-Molecule Electrical Profiling of Peptides and Proteins.
Adv Sci (Weinh). 2024 Jul;11(28):e2401877. doi: 10.1002/advs.202401877. Epub 2024 Apr 19.
8
Charge Transport Across Dynamic Covalent Chemical Bridges.
Nano Lett. 2022 Oct 26;22(20):8331-8338. doi: 10.1021/acs.nanolett.2c03288. Epub 2022 Oct 10.
9
Constrained DFT for Molecular Junctions.
Nanomaterials (Basel). 2022 Apr 6;12(7):1234. doi: 10.3390/nano12071234.
10
Ubiquitous Electron Transport in Non-Electron Transfer Proteins.
Life (Basel). 2020 May 20;10(5):72. doi: 10.3390/life10050072.

本文引用的文献

1
Electron Transfer across Helical Peptides.
Chempluschem. 2015 Jul;80(7):1075-1095. doi: 10.1002/cplu.201500121. Epub 2015 Jun 16.
2
Electronically Transparent Au-N Bonds for Molecular Junctions.
J Am Chem Soc. 2017 Oct 25;139(42):14845-14848. doi: 10.1021/jacs.7b08370. Epub 2017 Oct 10.
3
Detecting Electron Transport of Amino Acids by Using Conductance Measurement.
Sensors (Basel). 2017 Apr 10;17(4):811. doi: 10.3390/s17040811.
4
Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10785-90. doi: 10.1073/pnas.1606779113. Epub 2016 Sep 12.
6
Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure.
J Am Chem Soc. 2015 Aug 5;137(30):9617-26. doi: 10.1021/jacs.5b03933. Epub 2015 Jul 22.
7
Electronic transport via proteins.
Adv Mater. 2014 Nov 12;26(42):7142-61. doi: 10.1002/adma.201402304. Epub 2014 Sep 25.
8
Control of single-molecule junction conductance of porphyrins via a transition-metal center.
Nano Lett. 2014 Sep 10;14(9):5365-70. doi: 10.1021/nl5025062. Epub 2014 Aug 15.
9
Effects of side chains in helix nucleation differ from helix propagation.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6636-41. doi: 10.1073/pnas.1322833111. Epub 2014 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验