Brisendine Joseph M, Refaely-Abramson Sivan, Liu Zhen-Fei, Cui Jing, Ng Fay, Neaton Jeffrey B, Koder Ronald L, Venkataraman Latha
Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, and Department of Biochemistry, City College of New York , New York, New York 10031, United States.
Department of Physics, University of California Berkeley , Berkeley, California 94720, United States.
J Phys Chem Lett. 2018 Feb 15;9(4):763-767. doi: 10.1021/acs.jpclett.8b00176. Epub 2018 Feb 1.
We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.
我们使用基于扫描隧道显微镜的断接结方法在单分子水平上测量未修饰肽的电导,利用N端胺基和C端羧基作为与金金属结合的连接体。我们对寡甘氨酸和寡丙氨酸主链的电导测量不依赖于肽侧链连接体。我们将结果与一端为胺基另一端为羧基不对称终止的烷烃进行比较,以表明肽键会降低原本饱和碳链的电导。使用新开发的第一性原理方法,我们将电导降低归因于肽键处的电荷局域化,这相对于费米能级降低了前沿轨道的能量以及与引线的电子耦合,降低了隧穿概率。至关重要的是,与烷烃相比,这表现为肽主链的电导衰减随长度增加而增加。