Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.
J Biomed Mater Res A. 2018 Jun;106(6):1500-1510. doi: 10.1002/jbm.a.36354. Epub 2018 Feb 13.
Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the neuronal guidance growth are still not reported. In the present study, graphene oxide (GO) and carboxylated graphene oxide (GO-COOH) were used to investigate the potential effects on axonal guidance growth in the primary cultured cortical neurons. In addition, we characterized the structure and chemical composition of synthesized GO and GO-COOH using Fourier transform infrared spectrophotometer and scanning electron microscope assays and Raman analysis. GO is not neurotoxic and not conductive in a soluble form. However, GO-COOH has higher solubility and conductivity. Cell viability was assessed using CCK-8 assays and fluorescein diacetate after GO and GO-COOH treatment (0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 50, and 100 µg/mL). There are significant increases of cell viability and axonal growth after GO (2 and 4 μg/mL) and GO-COOH treatment (2 and 4 μg/mL). We further investigated the molecular mechanism of axonal guidance growth after GO and GO-COOH (2 and 4 μg/mL) application. Additionally, GO and GO-COOH up-regulated expression of Netrin-1 and its receptor, deleted in colorectal cancer by immunofluorescence assays and western blots assay. Our study demonstrated that GO-COOH activated Cdc42 and Rac1 and dramatically decreased RhoA. Thus, GO-COOH (2 µg/mL) is much better to be nanocarriers than GO for axonal guidance and growth in this study. GO-COOH may be used to facilitate guidance for regenerating neurons in the future. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1500-1510, 2018.
近年来,石墨烯及其衍生物的纳米材料得到了广泛的应用,但它们对神经元导向生长的影响尚未见报道。本研究采用氧化石墨烯(GO)和羧基化氧化石墨烯(GO-COOH)来研究其对原代皮质神经元轴突导向生长的潜在影响。此外,我们使用傅里叶变换红外光谱仪、扫描电子显微镜和拉曼分析对合成的 GO 和 GO-COOH 的结构和化学成分进行了表征。GO 在可溶形式下没有神经毒性和导电性。然而,GO-COOH 的水溶性和导电性更高。通过 CCK-8 测定和荧光二乙酸酯处理后(0、1、2、4、5、6、8、10、12、14、16、18、20、50 和 100 µg/mL)评估细胞活力。GO(2 和 4 µg/mL)和 GO-COOH(2 和 4 µg/mL)处理后,细胞活力和轴突生长显著增加。我们进一步研究了 GO 和 GO-COOH(2 和 4 µg/mL)应用后轴突导向生长的分子机制。此外,GO 和 GO-COOH 通过免疫荧光和 Western blot 检测上调 Netrin-1 及其受体缺失结肠癌的表达。我们的研究表明,GO-COOH 激活了 Cdc42 和 Rac1,显著降低了 RhoA。因此,在这项研究中,GO-COOH(2 µg/mL)作为纳米载体比 GO 更有利于轴突的导向和生长。GO-COOH 可能在未来用于促进再生神经元的导向。 © 2018 年 Wiley 期刊出版公司。生物医学材料研究杂志 A 部分:106A:1500-1510,2018 年。