Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany.
PLoS Pathog. 2018 Jan 29;14(1):e1006857. doi: 10.1371/journal.ppat.1006857. eCollection 2018 Jan.
Codon pair bias deoptimization (CPBD) has enabled highly efficient and rapid attenuation of RNA viruses. The technique relies on recoding of viral genes by increasing the number of codon pairs that are statistically underrepresented in protein coding genes of the viral host without changing the amino acid sequence of the encoded proteins. Utilization of naturally underrepresented codon pairs reduces protein production of recoded genes and directly causes virus attenuation. As a result, the mutant virus is antigenically identical with the parental virus, but virulence is reduced or absent. Our goal was to determine if a virus with a large double-stranded DNA genome, highly oncogenic Marek's disease virus (MDV), can be attenuated by CPBD. We recoded UL30 that encodes the catalytic subunit of the viral DNA polymerase to minimize (deoptimization), maximize (optimization), or preserve (randomization) the level of overrepresented codon pairs of the MDV host, the chicken. A fully codon pair-deoptimized UL30 mutant could not be recovered in cell culture. The sequence of UL30 was divided into three segments of equal length and we generated a series of mutants with different segments of the UL30 recoded. The codon pair-deoptimized genes, in which two segments of UL30 had been recoded, showed reduced rates of protein production. In cultured cells, the corresponding viruses formed smaller plaques and grew to lower titers compared with parental virus. In contrast, codon pair-optimized and -randomized viruses replicated in vitro with kinetics that were similar to those of the parental virus. Animals that were infected with the partially codon pair-deoptimized virus showed delayed progression of disease and lower mortality rates than codon pair-optimized and parental viruses. These results demonstrate that CPBD of a herpesvirus gene causes attenuation of the recoded virus and that CPBD may be an applicable strategy for attenuation of other large DNA viruses.
密码子对偏向性去优化(CPBD)已使 RNA 病毒的高效和快速衰减成为可能。该技术依赖于通过增加病毒基因中密码子对的数量来实现,这些密码子对在病毒宿主的蛋白质编码基因中统计上是不足的,而不改变编码蛋白的氨基酸序列。利用自然不足的密码子对减少了重编码基因的蛋白质产量,并直接导致病毒衰减。结果,突变病毒与亲本病毒在抗原上相同,但毒力降低或不存在。我们的目标是确定具有大型双链 DNA 基因组的病毒,高度致癌的马立克氏病病毒(MDV),是否可以通过 CPBD 进行衰减。我们重编码了 UL30,该基因编码病毒 DNA 聚合酶的催化亚基,以最小化(去优化)、最大化(优化)或保留(随机化)MDV 宿主(鸡)中过表达密码子对的水平。在细胞培养中无法恢复完全密码子对去优化的 UL30 突变体。将 UL30 的序列分成三个长度相等的片段,我们生成了一系列具有不同 UL30 片段重编码的突变体。两个 UL30 片段被重编码的密码子对去优化基因显示出蛋白质产量降低的速率。在培养细胞中,与亲本病毒相比,相应的病毒形成的斑块更小,滴度更低。相比之下,密码子对优化和随机化病毒在体外的复制动力学与亲本病毒相似。感染部分密码子对去优化病毒的动物疾病进展较慢,死亡率低于密码子对优化和亲本病毒。这些结果表明,疱疹病毒基因的 CPBD 导致重编码病毒的衰减,并且 CPBD 可能是其他大型 DNA 病毒衰减的适用策略。