Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2879-2883. doi: 10.1002/anie.201713417. Epub 2018 Feb 9.
Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs.
使用可再生有机电极的可持续钠离子电池(SSIBs)是锂离子电池在大规模可再生能源存储方面的有前途的替代品。然而,缺乏高性能的阳极材料阻碍了 SSIBs 的发展。在此,我们报告了一种基于偶氮基团的新型有机阳极材料,用于 SSIBs。偶氮苯-4,4'-二羧酸酸钠被用作模型来研究偶氮化合物的电化学行为和反应机制。它在 0.2C 时表现出 170 mAh g 的可逆容量。当电流密度增加到 20C 时,2000 次循环后仍可保持 98 mAh g 的可逆容量,表现出优异的循环稳定性和高倍率性能。详细的特性表明,偶氮基团作为电化学活性位点与 Na 可逆键合。偶氮化合物和 Na 离子之间的可逆氧化还原化学为开发长循环寿命和高倍率 SSIBs 提供了机会。