Suppr超能文献

III型锥虫蛋白精氨酸甲基转移酶7(TbPRMT7)中的苯丙氨酸71将该酶的作用限制为单甲基化。

Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation.

作者信息

Cáceres Tamar B, Thakur Abhishek, Price Owen M, Ippolito Nicole, Li Jun, Qu Jun, Acevedo Orlando, Hevel Joan M

机构信息

Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States.

Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States.

出版信息

Biochemistry. 2018 Feb 27;57(8):1349-1359. doi: 10.1021/acs.biochem.7b01265. Epub 2018 Feb 7.

Abstract

Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal S2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.

摘要

蛋白质精氨酸甲基转移酶7(PRMT7)在PRMT家族中是独特的,因为它是已知唯一专门生成单甲基精氨酸(MMA)的同种型。鉴于其在表观遗传学中的作用,严格的单甲基化活性的机制基础正在研究中。据认为,PRMT7酶由于活性位点的空间位阻而无法添加第二个甲基,从而限制其只能进行单甲基化。为了验证这一点,我们使用加速分子动力学、定点诱变、动力学、结合和产物分析来探究锥虫PRMT7(TbPRMT7)的活性位点。动力学模拟和实验结果均表明,将Phe71突变为Ile会使该酶从III型甲基转移酶转变为I/II混合型,即一种现在可以进行二甲基化的酶。相比之下,Phe71的丝氨酸和丙氨酸突变体保留了天然酶的III型行为。这些结果与仅基于空间位阻的模型来解释产物特异性不一致。相反,这些与肽结合的变体的分子动力学模拟显示了潜在底物与TbPRMT7的Glu172之间的氢键。只有在Phe71突变为Ile的情况下,MMA与酶之间的这种相互作用才得以维持,并获得了最佳S2甲基转移的几何结构。这些研究结果突出了计算和实验方法相结合在更好地理解PRMT如何决定产物特异性方面的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验