Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, Old Aberdeen, AB24 3UE, United Kingdom.
Sci Rep. 2018 Jan 29;8(1):1825. doi: 10.1038/s41598-018-19707-1.
Electroencephalography (EEG) records fast-changing neuronal signalling and communication and thus can offer a deep understanding of cognitive processes. However, traditional data analyses which employ the Fast-Fourier Transform (FFT) have been of limited use as they do not allow time- and frequency-resolved tracking of brain activity and detection of directional connectivity. Here, we applied advanced qEEG tools using autoregressive (AR) modelling, alongside traditional approaches, to murine data sets from common research scenarios: (a) the effect of age on resting EEG; (b) drug actions on non-rapid eye movement (NREM) sleep EEG (pharmaco-EEG); and (c) dynamic EEG profiles during correct vs incorrect spontaneous alternation responses in the Y-maze. AR analyses of short data strips reliably detected age- and drug-induced spectral EEG changes, while renormalized partial directed coherence (rPDC) reported direction- and time-resolved connectivity dynamics in mice. Our approach allows for the first time inference of behaviour- and stage-dependent data in a time- and frequency-resolved manner, and offers insights into brain networks that underlie working memory processing beyond what can be achieved with traditional methods.
脑电图(EEG)记录快速变化的神经元信号和通讯,因此可以深入了解认知过程。然而,传统的数据分析方法,如快速傅里叶变换(FFT),由于不能实时和频率分辨地跟踪脑活动和检测定向连接,因此用处有限。在这里,我们应用了先进的 qEEG 工具,包括自回归(AR)建模,以及传统方法,来分析来自常见研究场景的小鼠数据集:(a)年龄对静息 EEG 的影响;(b)药物对非快速眼动(NREM)睡眠 EEG 的作用(药物 EEG);(c)在 Y 迷宫中正确与错误自发交替反应期间的动态 EEG 谱。AR 分析短的数据条可靠地检测到年龄和药物诱导的频谱 EEG 变化,而重归一化部分定向相干性(rPDC)报告了小鼠中随时间和频率分辨的连接动力学。我们的方法首次能够以时间和频率分辨的方式推断与行为和阶段相关的数据,并深入了解工作记忆处理背后的大脑网络,这是传统方法无法实现的。