Mosaku S K, Olateju E O, Ayodele K P, Akinsulore A, Ajiboye P O, Oloniniyi O I, Ayorinde A, Agboola O, Obayiuwana E, Akinwale O B, Oyekunle A O
Department of Mental Health, Obafemi Awolowo University, Ile-Ife, Nigeria.
Department of Electronic and Electrical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.
Data Brief. 2025 Jul 28;62:111934. doi: 10.1016/j.dib.2025.111934. eCollection 2025 Oct.
Machine-learning pipelines for schizophrenia demand large, ethnically diverse electroencephalography (EEG) corpora, yet African populations remain under-represented in the public domain. The African Schizophrenia EEG Dataset (ASZED-153) helps close this gap with 153 raw, 16-channel recordings from 76 clinically characterized patients and 77 matched controls recruited in south-western Nigeria (mean age ≈ 39 years). Signals were acquired at two hospital units using Contec KT-2400 (200 Hz) and BrainMaster Discovery24-E (256 Hz) systems under harmonized protocols, retaining only the devices' default filter settings. Each session contains four paradigms-eyes-closed resting state, arithmetic working-memory, auditory oddball to elicit mismatch negativity, and a 40 Hz auditory steady-state response-so oscillatory, ERP and cognitive-load markers can be compared within the same individuals. Recordings are released unchanged in European Data Format, accompanied by structured .gnr sidecars detailing clinical scores, device settings and protocol metadata, enabling transparent end-to-end pipelines Data are organized in a version-controlled tree with a public key-map, allowing new African centers to append recordings without breaking existing scripts and paving the way for federated growth beyond Nigeria. By uniting ancestral diversity, multi-task paradigms and minimal preprocessing, ASZED-153 will allow researchers audit ancestry-linked performance drift in existing classifiers, probe biomarkers that may be masked in Euro-Asian cohorts, benchmark algorithms across hardware heterogeneity, and prototype reproducible, open science workflows. ASZED-153 is openly available via Zenodo under a CC-BY licence, and contributions to future releases are welcomed. We anticipate that this resource will accelerate the development of fair, generalizable and clinically useful EEG-based tools for schizophrenia worldwide.
用于精神分裂症研究的机器学习流程需要大量、种族多样的脑电图(EEG)语料库,但非洲人群在公共领域的代表性仍然不足。非洲精神分裂症脑电图数据集(ASZED - 153)有助于填补这一空白,该数据集包含来自尼日利亚西南部招募的76名具有临床特征的患者和77名匹配对照的153份原始16通道记录(平均年龄约39岁)。使用Contec KT - 2400(200Hz)和BrainMaster Discovery24 - E(256Hz)系统,按照统一协议在两个医院科室采集信号,仅保留设备的默认滤波器设置。每个记录时段包含四种范式——闭眼静息状态、算术工作记忆、用于诱发失配负波的听觉Oddball范式以及40Hz听觉稳态反应——因此可以在同一个体中比较振荡、事件相关电位(ERP)和认知负荷标记。记录以欧洲数据格式原封不动地发布,并附有结构化的.gnr辅助文件,详细说明临床评分、设备设置和协议元数据,从而实现透明的端到端流程。数据以带有公共密钥映射的版本控制树形式组织,允许新的非洲中心添加记录而不破坏现有脚本,并为尼日利亚以外地区的联合发展铺平道路。通过整合祖先多样性、多任务范式和最小预处理,ASZED - 153将使研究人员能够审查现有分类器中与祖先相关的性能漂移,探究可能在欧亚人群队列中被掩盖的生物标志物,对跨硬件异质性的算法进行基准测试,并构建可重复的开放科学工作流程原型。ASZED - 153通过Zenodo以CC - BY许可公开提供,欢迎对未来版本做出贡献。我们预计这一资源将加速全球范围内用于精神分裂症研究的公平、通用且临床有用的基于脑电图工具的开发。