Averill Lynnette A, Averill Christopher L, Staley Lyndsay A, Ozawa-Kirk J L, Kauwe John Sk, Henrie-Barrus Patricia
US Department of Veterans Affairs, USA.
Yale University, USA.
Health Psychol Open. 2017 Dec 22;4(2):2055102917748459. doi: 10.1177/2055102917748459. eCollection 2017 Jul-Dec.
The Opioid Abuse Risk Screener was developed to support well-informed decision-making in opioid analgesic prescribing by extending the breadth of psychiatric risk factors evaluated relative to other non-clinician-administered measures. We examined the preliminary predictive validity of the Opioid Abuse Risk Screener relative to the widely used Screener and Opioid Assessment for Patients with Pain-Revised in predicting aberrant urine drug tests and controlled substance database checks. The Opioid Abuse Risk Screener is significantly different from the Screener and Opioid Assessment for Patients with Pain-Revised in predicting aberrant same-day urine drug tests ( = 2.912, = 0.0036) and controlled substance database checks within 1 year of assessment ( = 3.731, = 0.0002). Promising preliminary analyses using machine learning methods are also discussed.
阿片类药物滥用风险筛查工具的开发旨在通过扩展相对于其他非临床医生实施的措施所评估的精神风险因素的范围,支持在阿片类镇痛药物处方中做出明智的决策。我们检验了阿片类药物滥用风险筛查工具相对于广泛使用的疼痛患者筛查与阿片类药物评估修订版在预测异常尿液药物检测和管制药品数据库检查方面的初步预测效度。阿片类药物滥用风险筛查工具在预测当天异常尿液药物检测(χ² = 2.912,P = 0.0036)和评估后1年内的管制药品数据库检查(χ² = 3.731,P = 0.0002)方面与疼痛患者筛查与阿片类药物评估修订版存在显著差异。还讨论了使用机器学习方法进行的有前景的初步分析。