Suppr超能文献

美国物质使用障碍治疗项目参与者中与艾滋病毒检测相关的因素:一种机器学习方法。

Factors Associated with HIV Testing Among Participants from Substance Use Disorder Treatment Programs in the US: A Machine Learning Approach.

作者信息

Pan Yue, Liu Hongmei, Metsch Lisa R, Feaster Daniel J

机构信息

Division of Epidemiology, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 N.W. 14th ST, Miami, FL, 33136, USA.

Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 N.W. 14th ST, Miami, FL, 33136, USA.

出版信息

AIDS Behav. 2017 Feb;21(2):534-546. doi: 10.1007/s10461-016-1628-y.

Abstract

HIV testing is the foundation for consolidated HIV treatment and prevention. In this study, we aim to discover the most relevant variables for predicting HIV testing uptake among substance users in substance use disorder treatment programs by applying random forest (RF), a robust multivariate statistical learning method. We also provide a descriptive introduction to this method for those who are unfamiliar with it. We used data from the National Institute on Drug Abuse Clinical Trials Network HIV testing and counseling study (CTN-0032). A total of 1281 HIV-negative or status unknown participants from 12 US community-based substance use disorder treatment programs were included and were randomized into three HIV testing and counseling treatment groups. The a priori primary outcome was self-reported receipt of HIV test results. Classification accuracy of RF was compared to logistic regression, a standard statistical approach for binary outcomes. Variable importance measures for the RF model were used to select the most relevant variables. RF based models produced much higher classification accuracy than those based on logistic regression. Treatment group is the most important predictor among all covariates, with a variable importance index of 12.9%. RF variable importance revealed that several types of condomless sex behaviors, condom use self-efficacy and attitudes towards condom use, and level of depression are the most important predictors of receipt of HIV testing results. There is a non-linear negative relationship between count of condomless sex acts and the receipt of HIV testing. In conclusion, RF seems promising in discovering important factors related to HIV testing uptake among large numbers of predictors and should be encouraged in future HIV prevention and treatment research and intervention program evaluations.

摘要

艾滋病毒检测是艾滋病毒综合治疗和预防的基础。在本研究中,我们旨在通过应用随机森林(RF)这一强大的多元统计学习方法,找出物质使用障碍治疗项目中物质使用者接受艾滋病毒检测的最相关变量。我们还为不熟悉该方法的人提供了对该方法的描述性介绍。我们使用了美国国立药物滥用研究所临床试验网络艾滋病毒检测与咨询研究(CTN - 0032)的数据。共有来自美国12个社区物质使用障碍治疗项目的1281名艾滋病毒阴性或状态未知的参与者被纳入研究,并被随机分为三个艾滋病毒检测与咨询治疗组。先验主要结局是自我报告的艾滋病毒检测结果接收情况。将随机森林的分类准确率与逻辑回归(一种用于二元结局的标准统计方法)进行比较。使用随机森林模型的变量重要性度量来选择最相关的变量。基于随机森林的模型产生的分类准确率远高于基于逻辑回归的模型。治疗组是所有协变量中最重要的预测因素,变量重要性指数为12.9%。随机森林变量重要性显示,几种无保护性行为类型、使用避孕套的自我效能和对使用避孕套的态度以及抑郁程度是艾滋病毒检测结果接收情况的最重要预测因素。无保护性行为次数与艾滋病毒检测接收情况之间存在非线性负相关。总之,随机森林在从大量预测因素中发现与艾滋病毒检测接受情况相关的重要因素方面似乎很有前景,应在未来的艾滋病毒预防和治疗研究以及干预项目评估中得到鼓励。

相似文献

引用本文的文献

本文引用的文献

1
Lifetime risk of a diagnosis of HIV infection in the United States.美国艾滋病毒感染诊断的终生风险。
Ann Epidemiol. 2017 Apr;27(4):238-243. doi: 10.1016/j.annepidem.2017.02.003. Epub 2017 Feb 21.
8
Random forests for genomic data analysis.随机森林在基因组数据分析中的应用。
Genomics. 2012 Jun;99(6):323-9. doi: 10.1016/j.ygeno.2012.04.003. Epub 2012 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验