Suppr超能文献

通过液相色谱-高分辨质谱联用技术进行有机微污染物鉴定时的联合碎片分析与保留时间预测性能

Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS.

作者信息

Hu Meng, Müller Erik, Schymanski Emma L, Ruttkies Christoph, Schulze Tobias, Brack Werner, Krauss Martin

机构信息

Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.

Department of Ecosystem Analyses, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.

出版信息

Anal Bioanal Chem. 2018 Mar;410(7):1931-1941. doi: 10.1007/s00216-018-0857-5. Epub 2018 Jan 30.

Abstract

In nontarget screening, structure elucidation of small molecules from high resolution mass spectrometry (HRMS) data is challenging, particularly the selection of the most likely candidate structure among the many retrieved from compound databases. Several fragmentation and retention prediction methods have been developed to improve this candidate selection. In order to evaluate their performance, we compared two in silico fragmenters (MetFrag and CFM-ID) and two retention time prediction models (based on the chromatographic hydrophobicity index (CHI) and on log D). A set of 78 known organic micropollutants was analyzed by liquid chromatography coupled to a LTQ Orbitrap HRMS with electrospray ionization (ESI) in positive and negative mode using two fragmentation techniques with different collision energies. Both fragmenters (MetFrag and CFM-ID) performed well for most compounds, with average ranking the correct candidate structure within the top 25% and 22 to 37% for ESI+ and ESI- mode, respectively. The rank of the correct candidate structure slightly improved when MetFrag and CFM-ID were combined. For unknown compounds detected in both ESI+ and ESI-, generally positive mode mass spectra were better for further structure elucidation. Both retention prediction models performed reasonably well for more hydrophobic compounds but not for early eluting hydrophilic substances. The log D prediction showed a better accuracy than the CHI model. Although the two fragmentation prediction methods are more diagnostic and sensitive for candidate selection, the inclusion of retention prediction by calculating a consensus score with optimized weighting can improve the ranking of correct candidates as compared to the individual methods. Graphical abstract Consensus workflow for combining fragmentation and retention prediction in LC-HRMS-based micropollutant identification.

摘要

在非目标筛查中,根据高分辨率质谱(HRMS)数据对小分子进行结构解析具有挑战性,尤其是在从化合物数据库检索到的众多结构中选择最有可能的候选结构。已经开发了几种碎片化和保留时间预测方法来改进这种候选结构的选择。为了评估它们的性能,我们比较了两种计算机辅助碎片化工具(MetFrag和CFM-ID)以及两种保留时间预测模型(基于色谱疏水性指数(CHI)和log D)。使用两种具有不同碰撞能量的碎片化技术,通过液相色谱与配备电喷雾电离(ESI)的LTQ Orbitrap HRMS联用,对一组78种已知有机微污染物进行了正负模式分析。两种碎片化工具(MetFrag和CFM-ID)对大多数化合物都表现良好,在ESI+模式下,正确候选结构的平均排名在前25%以内,在ESI-模式下分别为22%至37%。当MetFrag和CFM-ID结合使用时,正确候选结构的排名略有提高。对于在ESI+和ESI-模式下均检测到的未知化合物,一般来说,正模式质谱更有利于进一步的结构解析。两种保留时间预测模型对疏水性更强的化合物表现较好,但对早期洗脱的亲水性物质效果不佳。log D预测显示出比CHI模型更高的准确性。尽管这两种碎片化预测方法在候选结构选择方面更具诊断性和敏感性,但与单独方法相比,通过计算具有优化权重的共识分数纳入保留时间预测可以提高正确候选结构的排名。图形摘要基于液相色谱-高分辨率质谱的微污染物鉴定中结合碎片化和保留时间预测的共识工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验