Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Ciudad de Buenos Aires, Argentina.
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):177-199. doi: 10.1146/annurev-anchem-061318-114959. Epub 2019 Mar 18.
Metabolomics is the study of the metabolome, the collection of small molecules in living organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now made it possible to study metabolism at an omics or systems level. The significance of this burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine to plant science. Despite these advances, the central bottleneck in metabolomics remains the identification of key metabolites that play a class-discriminant role. Because metabolites do not follow a molecular alphabet as proteins and nucleic acids do, their identification is much more time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in metabolite identification with specific applications in metabolomics and how technologies such as mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently contribute to this challenging task.
代谢组学是研究代谢组的学科,即生物体、细胞、组织和生物体液中小分子的集合。质谱、液-气相分离、核磁共振波谱和大数据分析等技术的进步,使得现在可以在组学或系统水平上研究代谢。这个新兴科学领域的意义怎么强调都不为过:它影响了从生物医学到植物科学等多个学科。尽管有了这些进步,但代谢组学的核心瓶颈仍然是确定起分类判别作用的关键代谢物。由于代谢物不像蛋白质和核酸那样遵循分子字母表,因此它们的鉴定耗时更长,失败率更高。在这篇综述中,我们批判性地讨论了代谢物鉴定的最新技术进展,以及质谱、离子淌度、色谱和核磁共振等技术如何为这一具有挑战性的任务做出贡献。