Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.
Institute of Physics, University of Brasίlia, 70.919-970, Brasίlia, Brazil.
Sci Rep. 2018 Jan 30;8(1):1914. doi: 10.1038/s41598-018-19893-y.
The dynamical properties of polarons in armchair graphene nanoribbons (GNR) is numerically investigated in the framework of a two-dimensional tight-binding model that considers spin-orbit (SO) coupling and electron-lattice (e-l) interactions. Within this physical picture, novel polaron properties with no counterparts to results obtained from conventional tight-binding models are obtained. Our findings show that, depending on the system's width, the presence of SO coupling changes the polaron's charge localization giving rise to different degrees of stability for the charge carrier. For instance, the joint action of SO coupling and e-l interactions could promote a slight increase on the charge concentration in the center of the lattice deformation associated to the polaron. As a straightforward consequence, this process of increasing stability would lead to a depreciation in the polaron's motion by decreasing its saturation velocity. Our finds are in good agreement with recent experimental investigations for the charge localization in GNR, mostly when it comes to the influence of SO coupling. Moreover, the contributions reported here provide a reliable method for future works to evaluate spin-orbit influence on the performance of graphene nanoribbons.
在考虑自旋轨道(SO)耦合和电子-晶格(e-l)相互作用的二维紧束缚模型框架内,数值研究了扶手椅石墨烯纳米带(GNR)中极化子的动力学特性。在这种物理图像中,获得了没有对应于从传统紧束缚模型获得的结果的新型极化子特性。我们的研究结果表明,根据系统的宽度,SO 耦合的存在改变了极化子的电荷局域化,从而导致载流子的稳定性具有不同的程度。例如,SO 耦合和 e-l 相互作用的共同作用可能会导致与极化子相关的晶格变形中心的电荷浓度略有增加。作为直接的结果,通过降低其饱和速度,这种稳定性的增加过程将导致极化子运动的减速。我们的发现与 GNR 中电荷局域化的最近实验研究非常吻合,尤其是在 SO 耦合的影响方面。此外,这里报道的贡献为未来评估自旋轨道对石墨烯纳米带性能的影响提供了一种可靠的方法。